Negative-pressure wound therapy

Source: Wikipedia, the free encyclopedia.

Negative-pressure wound therapy
Application of a vacuum pump using a foam dressing to a wound
Other namesVacuum assisted closure
Negative pressure wound therapy device

Negative-pressure wound therapy (NPWT), also known as a vacuum assisted closure (VAC), is a

skin grafts, burns, sternal wounds. It may also be considered after a clean surgery in a person who is obese.[1][4][5]

NPWT is performed by applying a

antibiotics to irrigate the wound, intermittent removal of used fluid supports the cleaning and drainage of the wound bed.[6]

In 1995,

Technique

Pump used to create negative pressure
Pump used to create negative pressure

General technique for NPWT is as follows: A

dressing or filler material is fitted to the contours of a wound to protect the periwound and the overlying foam or gauze is then sealed with a transparent film.[9] A drainage tube is then connected to the dressing through an opening of the transparent film. Tubing is connected through an opening in the film drape to a canister on the side of a vacuum pump.[10] This turns an open wound into a controlled, closed wound with an airtight seal while removing excess fluid from the wound bed to enhance circulation and remove wound fluids.[11] This creates a moist healing environment and reduces edema.[9][10]

There are four types of dressings used over the wound surface: foam or gauze, a transparent film, and a non-adherent (woven or non-woven) contact layer if necessary. Foam dressings or woven gauze are used to fill open cavity wounds. Foam can be cut to size to fit wounds. Once the wound is filled, then a transparent film is applied over the top to create a seal around the dressing. The tubing is then attached and connected to the pump.

Once the dressing is sealed, the vacuum pump can be set to deliver continuous or intermittent pressures, with levels of pressure depending on the device used,

mmHg depending on the material used and patient tolerance.[14] Pressure can be applied constantly or intermittently.[10]

An example of a vacuum bandage
Negative pressure system used in a surgical wound in the right knee and thigh. The little vacuum pump is shown on the left of the photo, as is a subcutaneous drain.

The dressing type used depends on the type of wound, clinical objectives and patient. For pain sensitive patients with shallow or irregular wounds, wounds with undermining or explored tracts or tunnels, gauze may be used, while foam may be cut easily to fit a patient's wound that has a regular contour and perform better when aggressive granulation formation and wound contraction is the desired goal.[15]

Contraindications

Contraindications for NPWT use include:[16]

  1. Malignancy in the wound
  2. Untreated osteomyelitis
  3. Non enteric and unexplored fistulas
  4. Necrotic tissue with eschar present
  5. Exposed blood vessels, anastomotic sites, organs and nerves in the periwound area (must avoid direct foam contact with these structures)[17]

Effectiveness

Negative pressure wound therapy is usually used with chronic wounds or wounds that are expected to present difficulties while healing (such as those associated with diabetes).[3] Negative pressure wound therapy is approved by the FDA and numerous randomized controlled trials have been conducted on this technique, however, the evidence supporting how effective NPWT is compared to standard wound care dressings is not clear.[1] Low-level evidence indicates that there may be a lower risk of death and less surgical site infections associated with NPWT compared to standard dressing care, however there may not be a difference in the risk of wound reopening when comparing the two approaches.[1] NPWT may increase the risk of skin blistering compared to standard wound care.[1] NPWT may be a more cost effective approach for closing wounds following a caesarean section in women who are obese, however, NPWT is not likely as cost effective for closing wounds associated with fracture surgeries. It is not clear if NPWT is cost effective for closing wounds associated with other types of surgery.[1] NPWT has been used to treat non-trauma patients after abdominal surgery.[18] Non-trauma patients are people who might need surgery for conditions such as abdominal infections or cancer. However, it is still not clear how safe and effective NPWT is for treating non-trauma patients with open abdomens.[18]

For treating diabetic ulcers of the feet, "consistent evidence of the benefit of NPWT" in the treatment of

bedsores were conflicting and research on mixed wounds was of poor quality, but promising.[19] There is no evidence of increased significant complications.[19] The review concluded "There is now sufficient evidence to show that NPWT is safe, and will accelerate healing, to justify its use in the treatment of diabetes-associated chronic leg wounds. There is also evidence, though of poor quality, to suggest that healing of other wounds may also be accelerated."[19]

Mechanism

The use of NPWT to enhance wound healing is thought to be by removing excess extracellular fluid and decreasing tissue edema, which leads to increased blood flow and stabilization of the wound environment.[citation needed] A reduction in systemic (e.g. interleukins, monocytes) and local mediators of inflammation has been demonstrated in experimental models, while decreased matrix metalloproteinase activity and bacterial burden have been documented clinically.[citation needed] In vivo, NPWT has been shown to increase fibroblast proliferation and migration, collagen organization, and to increase the expression of vascular endothelial growth factor and fibroblast growth factor-2, thereby enhancing wound healing.[20]

See also

References

  1. ^
    PMID 35471497
    .
  2. ^ Cipolla J, Baillie DR, Steinberg SM, Martin ND, Jaik NP, Lukaszczyk JJ, Stawicki SP (2008). "Negative pressure wound therapy: Unusual and innovative applications". OPUS 12 Scientist. 2 (3): 15–29. Archived from the original on 11 June 2017. Retrieved 2 March 2015.
  3. ^
    PMID 19725415
    .
  4. .
  5. .
  6. PMID 9931834. {{cite book}}: |journal= ignored (help
    )
  7. ^ "Vacuum Assisted Closure Wound Therapy Cleared for Partial Thickness Burns". Reuters Health Medical News. 27 January 2003.[verification needed]
  8. ISSN 0279-4799
    .
  9. ^ a b "The Challenges of Negative Pressure Wound Therapy in Clinical Practice | Today's Wound Clinic". www.todayswoundclinic.com. Retrieved 20 April 2017.
  10. ^
    PMID 11957602
    .
  11. ^ Moody Y (19 July 2001). "Advances in healing chronic wounds". The Ithaca Journal. Ithaca, NY. p. 10A.
  12. ^ Miller MS, Brown R, McDaniel C (1 September 2005). "Negative pressure wound therapy options promote patient care". Biomechanics. p. 49. Archived from the original on 29 September 2011.
  13. ^ Miller MS (February 2009). "Multiple approaches offer negative pressure options". Biomechanics. Archived from the original on 29 September 2011.
  14. S2CID 26015801
    .
  15. .
  16. ^ KCI clinical guidelines
  17. ^ "V.A.C. Therapy Indications and Contraindications". www.activactherapy.com. Archived from the original on 12 April 2018. Retrieved 20 April 2017.
  18. ^
    PMID 35514120
    .
  19. ^
    PMID 21135797. Archived from the original
    on 5 October 2011. Retrieved 6 June 2011.
  20. .