Neil J. Gunther

Source: Wikipedia, the free encyclopedia.

Neil James Gunther
Christie J. Eliezer (Masters)
David J. Wallace
(Doctorate)

Neil Gunther (born 15 August 1950) is a

packet networks, and his universal law of computational scalability.[1][2][3][4][5][6]

Gunther is a Senior Member of both the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE), as well as a member of the American Mathematical Society (AMS), American Physical Society (APS), Computer Measurement Group (CMG) and ACM SIGMETRICS.

He is currently focused on developing quantum information system technologies.[7]

Biography

Gunther is an Australian of

electrical power station, borrowed an organic chemistry text from the chemists in the quality control laboratory. This ultimately led to an intense interest in synthesizing Azo dyes. At around age 14, Gunther attempted to predict the color of azo dyes based on the chromophore-auxochrome combination. Apart from drawing up empirical tables, this effort was largely unsuccessful due to his lack of knowledge of quantum theory
.

Post-Doc years

Gunther taught physics at

JPL to develop thermoelectric materials for their deep-space missions. Gunther was asked to analyze the thermal stability test data from the Voyager RTGs. He discovered that the stability of the silicon-germanium (Si-Ge) thermoelectric alloy was controlled by a soliton-based precipitation mechanism.[8] JPL used his work to select the next generation of RTG materials for the Galileo mission
launched in 1989.

Xerox years

In 1982, Gunther joined

VLSI design fabrication line. Ultimately, he was recruited onto the Dragon multiprocessor workstation project where he also developed the PARCbench
multiprocessor benchmark. This was his first foray into computer performance analysis.

1989, he developed a Wick-rotated version of Richard Feynman's quantum path integral formalism for analyzing performance degradation in large-scale computer systems and packet networks.[9]

Pyramid years

In 1990 Gunther joined Pyramid Technology (now part of Fujitsu Siemens Computers) where he held positions as senior scientist and manager of the Performance Analysis Group that was responsible for attaining industry-high TPC benchmarks on their Unix multiprocessors. He also performed simulations for the design of the Reliant RM1000 parallel database server.

Consulting practice

Gunther founded Performance Dynamics Company as a sole proprietorship, registered in California in 1994, to provide consulting and educational services for the management of high performance computer systems with an emphasis on performance analysis and enterprise-wide capacity planning. He went on to release and develop his own open-source performance modeling software called "PDQ (Pretty Damn Quick)" around 1998. That software also accompanied his first textbook on performance analysis entitled The Practical Performance Analyst. Several other books have followed since then.

Current research interests

Quantum information systems

In 2004, Gunther has embarked on joint research into quantum information systems based on

wave-particle duality
of light.

In its simplest rendition, this theory can be considered as providing the

optical information processing.[11]

Performance visualization

Inspired by the work of

google group
.

Universal Law of Computational Scalability

The throughput capacity X(N) of a computational platform is given by:

where N represents either the number of physical processors in the hardware configuration or the number of users driving the software application. The parameters , and respectively represent the levels of contention (e.g., queueing for shared resources), coherency delay (i.e., latency for data to become consistent) and concurrency (or effective parallelism) in the system. The parameter also quantifies the retrograde throughput seen in many stress tests but not accounted for in either

event-based simulations
. This scalability law was originally developed by Gunther in 1993 while he was employed at
clusters, and GRID architectures. Also, because each of the three terms has a definite physical meaning, they can be employed as a heuristic
to determine where to make performance improvements in hardware platforms or software applications.

At a more fundamental level, the above equation can be derived[14] from the Machine Repairman queueing model:[15]

Theorem (Gunther 2008): The universal scalability law is equivalent to the synchronous queueing bound on throughput in a modified Machine Repairman with state-dependent service times.

The following corollary (Gunther 2008 with ) corresponds to Amdahl's law:[16]

Theorem (Gunther 2002): Amdahl's law for parallel speedup is equivalent to the synchronous queueing bound on throughput in a Machine Repairman model of a multiprocessor.

Awards

  • Senior Member ACM (elected April 2009).
  • Senior Member IEEE (elected February 2009).
  • Recipient of the A. A. Michelson Award, December 2008.
  • Summer Research Institute visitor,
    EPFL
    2006 and 2007.
  • Lecturer, Western Institute of Computer Science, Stanford University, 1997–2000.
  • Best paper award, CMG conference 1996.
  • Visiting Scholar in Materials Science, Stanford University, 1981–1982.
  • Science Research Council Studentship, U.K. 1976–1980.
  • Commonwealth Postgraduate Scholarship, Australia 1975–1976.

Selected bibliography

Theses

  • The Feynman Path Integral in Non-Relativistic Quantum Mechanics and Quantum Electrodynamics, La Trobe University (AUS),

BSc Honors dissertation, department of physics, October (1974)

  • Dynamical Symmetry Groups: The Study and Interpretation of Certain Invariants as Group Generators in Quantum Mechanics, La Trobe University (AUS), MSc dissertation, department of applied mathematics, November (1976)
  • Broken Dynamical Symmetries in Quantum Field Theory and Phase Transition Phenomena, University of Southampton (U.K.), PhD dissertation, department of physics, December (1979)

Books

Heidelberg, Germany, October 2001,

)

Invited presentations

  • Goldstone Modes in First-order Phase Transitions, Sixth West Coast Conference on Statistical Mechanics, IBM Research Laboratories, San Jose, June (1980)
  • Instanton Techniques for Queueing Models of Large Computer Systems: Getting a Piece of the Action, SIAM Conference on Applied Probability in Science and Engineering, New Orleans, Louisiana, March (1990)
  • (Numerical) Investigations into Physical Power-law Models of Internet Traffic Using the Renormalization Group, IFORS Conference of Operations Research Societies, Honolulu, Hawaii, 11–15 July (2005)

Papers

References

  1. ^ Microsoft developer blog comparing Amdahl's law with Gunther's law (2009)
  2. ^ Computer Measurement Group Interview part 1 Archived 22 July 2011 at the Wayback Machine and part 2 (2009)
  3. ^ Springer author biography
  4. ^ Oracle performance experts
  5. ^ La Trobe University alumnus profile Archived 7 June 2011 at the Wayback Machine
  6. ^ Interview with John C. Dvorak (1998)
  7. ^ a b D. L. Boiko; Neil J. Gunther; N. Brauer; M. Sergio; C. Niclass; G. Beretta.; E. Charbon (2009). "A Quantum Imager for Intensity Correlated Photons". New Journal of Physics.
  8. ^ Gunther, Neil J. (1982). ""Solitons and Their Role in the Degradation of Modified Silicon-Germanium Alloys" in Proc. IEEE Fourth Int. Conf. on Thermoelectric Energy Conversion" (PDF). IEEE, Volume 82CH1763-2, Pages 89–95.
  9. .
  10. ^ Gunther, Neil J.; Charbon, E.; Boiko, D. L.; Beretta, G. (2006). "Photonic Information Processing Needs Quantum Design Rules". SPIE Online.
  11. .
  12. .
  13. ^ Gunther, Neil J. (1993). ""A Simple Capacity Model for Massively Parallel Transaction Systems" in Proc. CMG Conf., San Diego, California" (PDF). CMG, Pages 1035–1044.
  14. ].
  15. .
  16. .

External links