Pulse programming

Source: Wikipedia, the free encyclopedia.

Pulse programming in the field of

superconducting junctions, and many other quantum bit implementations. Traditionally, pulse programmers were built using hard-wired analog electronics to produce a fixed sequence of waveforms, but modern pulse programmers make use of direct digital synthesis programmable electronics controlled by a personal computer
to make precisely reproducible sequences.

Open source pulse programming

There are several commercial pulse programmers available whose designs are proprietary. A notable open source pulse programmer system was originally designed by Paul Pham as part of his master's thesis at

, and was later adopted by the following trapped ion research groups:

Further extensions to the system were designed and implemented by Paul Pham while he resided at 419 Boylston in Seattle, with major contributions from Philipp Schindler at Innsbruck and Lutz Petersen at MPQ. As of 2010, the core part of the pulse programmer system (the FPGA sequencer board) is no longer being actively maintained. However, the Innsbruck group has designed and assembled its own custom DDS boards which generate the actual waveforms that is compatible with the FPGA sequencer board.

A new open source system called ARTIQ is being developed by M-Labs.