Residue field

Source: Wikipedia, the free encyclopedia.

In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and m is a maximal ideal, then the residue field is the quotient ring k = R/m, which is a field.[1] Frequently, R is a local ring and m is then its unique maximal ideal.

This construction is applied in algebraic geometry, where to every point x of a scheme X one associates its residue field k(x).[2] One can say a little loosely that the residue field of a point of an abstract algebraic variety is the 'natural domain' for the coordinates of the point.[clarification needed]

Definition

Suppose that R is a commutative local ring, with maximal ideal m. Then the residue field is the quotient ring R/m.

Now suppose that X is a

localization
Ap of A by A \ p, and Ap has maximal ideal m = p·Ap. Applying the construction above, we obtain the residue field of the point x :

k(x) := Ap / p·Ap.

One can prove that this definition does not depend on the choice of the affine neighbourhood U.[3]

A point is called K-rational for a certain field K, if k(x) = K.[4]

Example

Consider the

affine line A1(k) = Spec(k[t]) over a field k. If k is algebraically closed
, there are exactly two types of prime ideals, namely

  • (t − a), ak
  • (0), the zero-ideal.

The residue fields are

  • , the function field over k in one variable.

If k is not algebraically closed, then more types arise, for example if k = R, then the prime ideal (x2 + 1) has residue field isomorphic to C.

Properties

See also

References

  1. .
  2. .
  3. ^ Intuitively, the residue field of a point is a local invariant. Axioms of schemes are set up in such a way as to assure the compatibility between various affine open neighborhoods of a point, which implies the statement.
  4. ^ Görtz, Ulrich and Wedhorn, Torsten. Algebraic Geometry: Part 1: Schemes (2010) Vieweg+Teubner Verlag.

Further reading