Self-propelled anti-aircraft weapon

Source: Wikipedia, the free encyclopedia.
ZSU-23-4 in California
.

An anti-aircraft vehicle, also known as a self-propelled anti-aircraft gun (SPAAG) or self-propelled air defense system (SPAD), is a mobile vehicle with a dedicated anti-aircraft capability.

Specific weapon systems used include

Pantsir-S1). Platforms used include both trucks and heavier combat vehicles such as armored personnel carriers and tanks
, which add protection from aircraft, artillery, and small arms fire for front line deployment.

Anti-aircraft guns are usually mounted in a quickly-traversing turret with a high rate of elevation, for tracking fast-moving aircraft. They are often in dual or quadruple mounts, allowing a high rate of fire. In addition, most anti-aircraft guns can be used in a direct-fire role against surface targets to great effect. Today, surface-to-air missiles (generally mounted on similar turrets) have largely supplanted anti-aircraft guns, but they may return as a cheap way to counter unmanned aerial systems (drones), cruise missiles, and ultralight aircraft.

History

World War I

A World War 1, British, truck-mounted, QF 3 inch gun

Anti-aircraft machine guns have long been mounted on trucks, and these were quite common during World War I. A predecessor of the WWII German "88" anti-aircraft gun, the WWI German 77 mm anti-aircraft gun, was truck-mounted and used to great effect against British tanks.

The British

QF 3 inch 20 cwt was mounted on trucks for use on the Western Front. The British also had a first dedicated anti aircraft weapon, the QF 1-pounder pom-pom. Mounted on a armoured truck titled the Pierce-Arrow armoured AA lorry, which was produced in limited numbers and only seeing service throughout 1915. Towards the end of the war Germany produced three prototype SPAAGs with AA guns mounted on A7V chassis known as the A7V Flakpanzer.[1]

Inter-war period

Between the two World Wars, the United Kingdom developed the Birch gun, a general-purpose artillery piece on an armoured tracked chassis capable of maintaining formation with their current tanks over terrain. The gun could be elevated for anti-aircraft use.

Vickers Armstrong "Type 76" SPAAG loaded onto a train.

The first tracked SPAAG-design to be manufactured in series was most likely the British/Siamese Vickers Armstrong "Type 76" (per

Franco-Thai war
(1940-1941) along with 30 Vickers Mk.E Type B 6-ton tanks. Despite being the first tracked SPAAG en masse, the open-top design of the Vickers Type 76 made it outdated even by the early 1930s.

Landsverk L-62 Anti-prototype in 1939.

The first modern SPAAG to be produced was most likely the Swedish

Bofors 40 mm Automatic Gun L/60 in an open-top revolving turret. The design was bought by Hungary just prior to the war and Finland ordered a refined model in 1941, known as the Anti II
.

By the late 1930s, the British had developed a version of the

quadruple 20 mm weapons
.

World War II

chassis.

Larger guns followed on larger trucks, but these mountings generally required off-truck setup in order to unlimber the stabilizing legs these guns needed. One exception to this rule was the Italian Cannone da 90/53 which was highly effective when mounted on trucks, a fit known as the "autocannoni da 90/53". The 90/53 was a feared weapon, notably in the anti-tank role, but only a few hundred had been produced by the time of the armistice in 1943.

Other nations tended to work on truck chassis. Starting in 1941, the British developed the "en

2 pounder) on a truck. This was to prevent the weapon from being damaged by long-distance towing across rough, stony deserts, and it was intended only to be a carrying method, with the gun unloaded for firing. However, crews tended to fire their weapons from their vehicles for the mobility this method provided, with consequent casualties. This undoubtedly inspired their Morris C9/B (officially the "Carrier, SP, 4x4, 40 mm AA"), a Bofors 40 mm AA gun mounted on a chassis derived from the Morris "Quad"
Field Artillery Tractor truck. Similar types, based on 3-ton lorries, were produced in Britain, Canada and Australia, and together formed the most numerous self-propelled AA guns in British service.

The U.S. Army brought truck-towed Bofors 40 mm AA guns along with truck-mounted units fitted with mechanized turrets when they sailed, first for Great Britain and then onto France. The turrets carried four .50 inch (12.7 mm) machine guns, which were designed to be adjusted to converge at the single point where enemy aircraft were expected to appear at low altitude in conduction of strafing runs directed at large infantry and field artillery units.

Interest in mobile AA turned to heavier vehicles with the mass and stability needed to easily train weapons of all sizes. Probably the desire, particularly in German service, for anti-aircraft vehicles to be armoured for their own protection also assisted this trend.

40M Nimrod
anti-aircraft battery.

The concept of using armored SPAAG (anti-aircraft tanks) en masse was pioneered by

M3 Half-track
.

The British developed their own SPAAGs throughout the war mounting multiple machine guns and light cannon on various tank and armoured car chassis and by 1943, the

. Although used during the Normandy landings, by that point German aircraft were contained by the Allies own air forces and they were largely unneeded.

Cold War and later

Czechoslovak self-propelled anti-aircraft gun M53/59 Praga developed in the late 1950s.
Flakpanzer Gepard, combining radars, fire control and two 35 mm guns in a new turret mounted on a Leopard chassis.
Tunguska-M1 mounts both missiles and cannons.

The introduction of jet engines and the subsequent rough doubling of aircraft speeds greatly reduced the effectiveness of the SPAAG against attack aircraft.[dubious

] A typical SPAAG round might have a muzzle velocity on the order of 1,000 metres per second (3,300 ft/s) and might take as long as two to three seconds to reach a target at its maximum range. An aircraft flying at 1,000 kilometres per hour (620 mph) is moving at a rate of about 280 metres per second (920 ft/s). This means the aircraft will have moved hundreds of meters during the flight time of the shells, greatly complicating the aiming problem to the point where close passes were essentially impossible to aim using manual gunsights. This speed also allowed the aircraft to rapidly fly out of range of the guns; even if the aircraft passes directly over the SPAAG, it would be within its firing radius for under 30 seconds.

SPAAG development continued through the early 1950s with ever-larger guns, improving the range and allowing the engagement to take place at longer distances where the crossing angle was smaller and aiming was easier. Examples including the 40 mm U.S. M42 Duster and the 57 mm Soviet ZSU-57-2. However, both were essentially obsolete before they entered service, and found employment solely in the ground-support role. The M42 was introduced to the Vietnam War to counter an expected North Vietnamese air offensive, but when this failed to materialize it was used as an effective direct-fire weapon. The ZSU-57 found similar use in the Yugoslav Wars, where its high-angle fire was useful in the mountainous terrain.

By the late 1950s, the US Army had given up on the SPAAG concept, considering all gun-based weapons to be useless against modern aircraft. This belief was generally held by many forces, and the anti-aircraft role turned almost exclusively to missile systems. The Soviet Union remained an outlier, beginning the development of a new SPAAG in 1957, which emerged as the

ZSU-23-4
in 1965. This system included search-and-track radars, fire control, and automatic gun-laying, greatly increasing its effectiveness against modern targets. The ZSU-23 proved very effective when used in concert with SAMs; the presence of SAMs forced aircraft to fly low to avoid their radars, placing them within range of the ZSUs.

The success of the ZSU-23 led to a resurgence of SPAAG development. This was also prompted by the introduction of

Gepard, the first western SPAAG to offer performance equal to or better than the ZSU. This system was widely copied in various NATO
forces.

SPAAG development continues, with many modern examples often combining both guns and short-range missiles. Examples include the Soviet/Russian

Tunguska-M1, which supplanted the ZSU-23 in service, the newer versions of the Gepard, the Chinese Type 95 SPAAA, and the British Marksman turret, which can be used on a wide variety of platforms. Some forces, like the US Army and USMC have mostly forgone self-propelled guns in favor of systems with short-range infrared-guided surface-to-air missiles in the AN/TWQ-1 Avenger and M6 Linebacker, which do not require radar to be accurate and are generally more reliable and cost-effective to field, though their ability to provide ground support is more limited. The U.S. Army did use the M163 VADS and developed the prototype design of the M247 Sergeant York
.

Present day

Skyranger 30 at ILA Berlin 2022 exhibition

Modern SPAAGs usually have short-range missiles for longer range engagement. The

Pantsir
system from Russia is primarily a missile battery, although it does have twin cannons as secondary armament.

Some examples of modern SPAAGs:

See also

References