Simple function

Source: Wikipedia, the free encyclopedia.

In the

real line, similar to a step function. Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values. Some authors also require simple functions to be measurable
; as used in practice, they invariably are.

A basic example of a simple function is the

floor function over the half-open interval [1, 9), whose only values are {1, 2, 3, 4, 5, 6, 7, 8}. A more advanced example is the Dirichlet function over the real line, which takes the value 1 if x is rational and 0 otherwise. (Thus the "simple" of "simple function" has a technical meaning somewhat at odds with common language.) All step functions
are simple.

Simple functions are used as a first stage in the development of theories of

Lebesgue integral
, because it is easy to define integration for a simple function and also it is straightforward to approximate more general functions by sequences of simple functions.

Definition

Formally, a simple function is a finite

measurable space. Let A1, ..., An ∈ Σ be a sequence of disjoint measurable sets, and let a1, ..., an be a sequence of real or complex numbers
. A simple function is a function of the form

where is the indicator function of the set A.

Properties of simple functions

The sum, difference, and product of two simple functions are again simple functions, and multiplication by constant keeps a simple function simple; hence it follows that the collection of all simple functions on a given measurable space forms a commutative algebra over .

Integration of simple functions

If a

integral
of f with respect to μ is

if all summands are finite.

Relation to Lebesgue integration

The above integral of simple functions can be extended to a more general class of functions, which is how the

Lebesgue integral
is defined. This extension is based on the following fact.

Theorem. Any non-negative measurable function is the pointwise limit of a monotonic increasing sequence of non-negative simple functions.

It is implied in the statement that the sigma-algebra in the co-domain is the restriction of the

Borel σ-algebra
to . The proof proceeds as follows. Let be a non-negative measurable function defined over the measure space . For each , subdivide the co-domain of into intervals, of which have length . That is, for each , define

for , and ,

which are disjoint and cover the non-negative real line ().

Now define the sets

for

which are measurable () because is assumed to be measurable.

Then the increasing sequence of simple functions

converges pointwise to as . Note that, when is bounded, the convergence is uniform.

See also

Bochner measurable function

References

  • J. F. C. Kingman, S. J. Taylor. Introduction to Measure and Probability, 1966, Cambridge.
  • S. Lang. Real and Functional Analysis, 1993, Springer-Verlag.
  • W. Rudin. Real and Complex Analysis, 1987, McGraw-Hill.
  • H. L. Royden. Real Analysis, 1968, Collier Macmillan.