Steady state
In
In
The concept of a steady state has relevance in many fields, in particular
In many systems, a steady state is not achieved until some time after the system is started or initiated. This initial situation is often identified as a transient state, start-up or warm-up period. For example, while the flow of fluid through a tube or electricity through a network could be in a steady state because there is a constant flow of fluid or electricity, a tank or capacitor being drained or filled with fluid is a system in transient state, because its volume of fluid changes with time.
Often, a steady state is approached
In
Applications
Economics
A steady state economy is an economy (especially a national economy but possibly that of a city, a region, or the world) of stable size featuring a stable population and stable consumption that remain at or below carrying capacity. In the economic growth model of Robert Solow and Trevor Swan, the steady state occurs when gross investment in physical capital equals depreciation and the economy reaches economic equilibrium, which may occur during a period of growth.
Electrical engineering
In
Sinusoidal Steady State Analysis is a method for analyzing alternating current circuits using the same techniques as for solving DC circuits.[1]
The ability of an electrical machine or power system to regain its original/previous state is called Steady State Stability.[2]
The stability of a system refers to the ability of a system to return to its steady state when subjected to a disturbance. As mentioned before, power is generated by synchronous generators that operate in synchronism with the rest of the system. A generator is synchronized with a bus when both of them have same frequency, voltage and phase sequence. We can thus define the power system stability as the ability of the power system to return to steady state without losing synchronicity. Usually power system stability is categorized into steady state, transient and dynamic stability.
Steady State Stability studies are restricted to small and gradual changes in the system operating conditions. In this we basically concentrate on restricting the bus voltages close to their nominal values. We also ensure that phase angles between two buses are not too large and check for the overloading of the power equipment and transmission lines. These checks are usually done using power flow studies.
Transient Stability involves the study of the power system following a major disturbance. Following a large disturbance in the synchronous alternator the machine power (load) angle changes due to sudden acceleration of the rotor shaft. The objective of the transient stability study is to ascertain whether the load angle returns to a steady value following the clearance of the disturbance.
The ability of a power system to maintain stability under continuous small disturbances is investigated under the name of Dynamic Stability (also known as small-signal stability). These small disturbances occur due to random fluctuations in loads and generation levels. In an interconnected power system, these random variations can lead catastrophic failure as this may force the
Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.
In some cases, it is useful to consider constant envelope vibration—vibration that never settles down to motionlessness, but continues to move at constant amplitude—a kind of steady-state condition.
Chemical engineering
In
A steady state flow process requires conditions at all points in an apparatus remain constant as time changes. There must be no accumulation of mass or energy over the time period of interest. The same mass flow rate will remain constant in the flow path through each element of the system.[3] Thermodynamic properties may vary from point to point, but will remain unchanged at any given point.[4]
Mechanical engineering
When a periodic force is applied to a mechanical system, it will typically reach a steady state after going through some transient behavior. This is often observed in vibrating systems, such as a clock pendulum, but can happen with any type of stable or semi-stable dynamic system. The length of the transient state will depend on the initial conditions of the system. Given certain initial conditions, a system may be in steady state from the beginning.
Biochemistry
In
Physiology
Homeostasis (from
Fiber optics
In
Pharmacokinetics
In pharmacokinetics, steady state is a dynamic equilibrium in the body where drug concentrations consistently stay within a therapeutic limit over time.[6]
See also
- Control theory
- Equilibrium point
- List of types of equilibrium
- Stability (disambiguation)
- State function
- Stationary process
- Stationary state
- Time invariance
- Transient state
References
- ^ "AC analysis intro 1 (Video)".
- ^ Power System Analysis
- )
- ISBN 0-070-72805-4.
- ^
This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22. (in support of MIL-STD-188).
- PMID 31985925, retrieved 2021-06-17