Instanton

Source: Wikipedia, the free encyclopedia.
Pauli matrix (top left). The dx2⊗σ3 coefficient (top right). These coefficients determine the restriction of the BPST instanton A with g=2,ρ=1,z=0 to this slice. The corresponding field strength centered around z=0 (bottom left). A visual representation of the field strength of a BPST instanton with center z on the compactification S4 of R4 (bottom right). The BPST instanton is a classical instanton solution to the Yang–Mills equations
on R4.

An instanton (or pseudoparticle

non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.[4]

In such quantum theories, solutions to the equations of motion may be thought of as

local minima, or saddle points. Instantons are important in quantum field theory
because:

Relevant to

dynamics, families of instantons permit that instantons, i.e. different critical points of the equation of motion, be related to one another. In physics instantons are particularly important because the condensation of instantons (and noise-induced anti-instantons) is believed to be the explanation of the noise-induced chaotic phase known as self-organized criticality
.

Mathematics

Mathematically, a Yang–Mills instanton is a self-dual or anti-self-dual

four-dimensional sphere
, and turned out to be localized in space-time, prompting the names pseudoparticle and instanton.

Yang–Mills instantons have been explicitly constructed in many cases by means of

differentiable structure and applied it to the construction of homeomorphic but not diffeomorphic four-manifolds. Many methods developed in studying instantons have also been applied to monopoles. This is because magnetic monopoles arise as solutions of a dimensional reduction of the Yang–Mills equations.[6]

Quantum mechanics

An instanton can be used to calculate the transition probability for a quantum mechanical particle tunneling through a potential barrier. One example of a system with an instanton effect is a particle in a double-well potential. In contrast to a classical particle, there is non-vanishing probability that it crosses a region of potential energy higher than its own energy.[4]

Motivation of considering instantons

Consider the quantum mechanics of a single particle motion inside the double-well potential The potential energy takes its minimal value at , and these are called classical minima because the particle tends to lie in one of them in classical mechanics. There are two lowest energy states in classical mechanics.

In quantum mechanics, we solve the Schrödinger equation

to identify the energy eigenstates. If we do this, we will find only the unique lowest-energy state instead of two states. The ground-state wave function localizes at both of the classical minima instead of only one of them because of the quantum interference or quantum tunneling.

Instantons are the tool to understand why this happens within the semi-classical approximation of the path-integral formulation in Euclidean time. We will first see this by using the WKB approximation that approximately computes the wave function itself, and will move on to introduce instantons by using the path integral formulation.

WKB approximation

One way to calculate this probability is by means of the semi-classical WKB approximation, which requires the value of to be small. The time independent Schrödinger equation for the particle reads

If the potential were constant, the solution would be a plane wave, up to a proportionality factor,

with

This means that if the energy of the particle is smaller than the potential energy, one obtains an exponentially decreasing function. The associated tunneling amplitude is proportional to

where a and b are the beginning and endpoint of the tunneling trajectory.

Path integral interpretation via instantons

Alternatively, the use of path integrals allows an instanton interpretation and the same result can be obtained with this approach. In path integral formulation, the transition amplitude can be expressed as

Following the process of Wick rotation (analytic continuation) to Euclidean spacetime (), one gets

with the Euclidean action

The potential energy changes sign under the Wick rotation and the minima transform into maxima, thereby exhibits two "hills" of maximal energy.

Let us now consider the local minimum of the Euclidean action with the double-well potential , and we set just for simplicity of computation. Since we want to know how the two classically lowest energy states are connected, let us set and . For and , we can rewrite the Euclidean action as

The above inequality is saturated by the solution of with the condition and . Such solutions exist, and the solution takes the simple form when and . The explicit formula for the instanton solution is given by

Here is an arbitrary constant. Since this solution jumps from one classical vacuum to another classical vacuum instantaneously around , it is called an instanton.

Explicit formula for double-well potential

The explicit formula for the eigenenergies of the Schrödinger equation with double-well potential has been given by Müller–Kirsten[7] with derivation by both a perturbation method (plus boundary conditions) applied to the Schrödinger equation, and explicit derivation from the path integral (and WKB). The result is the following. Defining parameters of the Schrödinger equation and the potential by the equations

and

the eigenvalues for are found to be:

Clearly these eigenvalues are asymptotically () degenerate as expected as a consequence of the harmonic part of the potential.

Results

Results obtained from the mathematically well-defined Euclidean path integral may be Wick-rotated back and give the same physical results as would be obtained by appropriate treatment of the (potentially divergent) Minkowskian path integral. As can be seen from this example, calculating the transition probability for the particle to tunnel through a classically forbidden region () with the Minkowskian path integral corresponds to calculating the transition probability to tunnel through a classically allowed region (with potential −V(X)) in the Euclidean path integral (pictorially speaking – in the Euclidean picture – this transition corresponds to a particle rolling from one hill of a double-well potential standing on its head to the other hill). This classical solution of the Euclidean equations of motion is often named "kink solution" and is an example of an instanton. In this example, the two "vacua" (i.e. ground states) of the double-well potential, turn into hills in the Euclideanized version of the problem.

Thus, the instanton field solution of the (Euclidean, i. e., with imaginary time) (1 + 1)-dimensional field theory – first quantized quantum mechanical description – allows to be interpreted as a tunneling effect between the two vacua (ground states – higher states require periodic instantons) of the physical (1-dimensional space + real time) Minkowskian system. In the case of the double-well potential written

the instanton, i.e. solution of

(i.e. with energy ), is

where is the Euclidean time.

Note that a naïve perturbation theory around one of those two vacua alone (of the Minkowskian description) would never show this non-perturbative tunneling effect, dramatically changing the picture of the vacuum structure of this quantum mechanical system. In fact the naive perturbation theory has to be supplemented by boundary conditions, and these supply the nonperturbative effect, as is evident from the above explicit formula and analogous calculations for other potentials such as a cosine potential (cf. Mathieu function) or other periodic potentials (cf. e.g. Lamé function and spheroidal wave function) and irrespective of whether one uses the Schrödinger equation or the path integral.[8]

Therefore, the perturbative approach may not completely describe the vacuum structure of a physical system. This may have important consequences, for example, in the theory of

Nambu–Goldstone bosons into massive pseudo-Nambu–Goldstone ones
.

Periodic instantons

In one-dimensional field theory or quantum mechanics one defines as "instanton" a field configuration which is a solution of the classical (Newton-like) equation of motion with Euclidean time and finite Euclidean action. In the context of soliton theory the corresponding solution is known as a kink. In view of their analogy with the behaviour of classical particles such configurations or solutions, as well as others, are collectively known as pseudoparticles or pseudoclassical configurations. The "instanton" (kink) solution is accompanied by another solution known as "anti-instanton" (anti-kink), and instanton and anti-instanton are distinguished by "topological charges" +1 and −1 respectively, but have the same Euclidean action.

"Periodic instantons" are a generalization of instantons.

Jacobian elliptic functions
which are periodic functions (effectively generalisations of trigonometrical functions). In the limit of infinite period these periodic instantons – frequently known as "bounces", "bubbles" or the like – reduce to instantons.

The stability of these pseudoclassical configurations can be investigated by expanding the Lagrangian defining the theory around the pseudoparticle configuration and then investigating the equation of small fluctuations around it. For all versions of quartic potentials (double-well, inverted double-well) and periodic (Mathieu) potentials these equations were discovered to be Lamé equations, see Lamé function.[10] The eigenvalues of these equations are known and permit in the case of instability the calculation of decay rates by evaluation of the path integral.[9]

Instantons in reaction rate theory

In the context of reaction rate theory periodic instantons are used to calculate the rate of tunneling of atoms in chemical reactions. The progress of a chemical reaction can be described as the movement of a pseudoparticle on a high dimensional potential energy surface (PES). The thermal rate constant can then be related to the imaginary part of the free energy by

whereby is the canonical partition function which is calculated by taking the trace of the Boltzmann operator in the position representation.

Using a wick rotation and identifying the Euclidean time with one obtains a path integral representation for the partition function in mass weighted coordinates

The path integral is then approximated via a steepest descent integration which takes only into account the contributions from the classical solutions and quadratic fluctuations around them. This yields for the rate constant expression in mass weighted coordinates

where is a periodic instanton and is the trivial solution of the pseudoparticle at rest which represents the reactant state configuration.

Inverted double-well formula

As for the double-well potential one can derive the eigenvalues for the inverted double-well potential. In this case, however, the eigenvalues are complex. Defining parameters by the equations

the eigenvalues as given by Müller-Kirsten are, for

The imaginary part of this expression agrees with the well known result of Bender and Wu.[11] In their notation

Quantum field theory

Hypersphere
Hypersphere Stereographic projection
Parallels (red), meridians (blue) and hypermeridians (green).[note 1]

In studying

vacua
".

A well understood and illustrative example of an instanton and its interpretation can be found in the context of a QFT with a

SU(2) (whose group manifold is the 3-sphere
). A certain topological vacuum (a "sector" of the true vacuum) is labelled by an
Pontryagin index
. As the third homotopy group of has been found to be the set of
integers,

there are infinitely many topologically inequivalent vacua, denoted by , where is their corresponding Pontryagin index. An instanton is a field configuration fulfilling the classical equations of motion in Euclidean spacetime, which is interpreted as a tunneling effect between these different topological vacua. It is again labelled by an integer number, its Pontryagin index, . One can imagine an instanton with index to quantify tunneling between topological vacua and . If Q = 1, the configuration is named

Albert S. Schwarz and Yu. S. Tyupkin
. The true vacuum of the theory is labelled by an "angle" theta and is an overlap of the topological sectors:

Gerard 't Hooft first performed the field theoretic computation of the effects of the BPST instanton in a theory coupled to fermions in [1]
. He showed that zero modes of the Dirac equation in the instanton background lead to a non-perturbative multi-fermion interaction in the low energy effective action.

Yang–Mills theory

The classical Yang–Mills action on a principal bundle with structure group G, base M, connection A, and curvature (Yang–Mills field tensor) F is

where is the volume form on . If the inner product on , the Lie algebra of in which takes values, is given by the Killing form on , then this may be denoted as , since

For example, in the case of the

U(1), F will be the electromagnetic field tensor. From the principle of stationary action
, the Yang–Mills equations follow. They are

The first of these is an identity, because dF = d2A = 0, but the second is a second-order partial differential equation for the connection A, and if the Minkowski current vector does not vanish, the zero on the rhs. of the second equation is replaced by . But notice how similar these equations are; they differ by a

Hodge star
. Thus a solution to the simpler first order (non-linear) equation

is automatically also a solution of the Yang–Mills equation. This simplification occurs on 4 manifolds with : so that on 2-forms. Such solutions usually exist, although their precise character depends on the dimension and topology of the base space M, the principal bundle P, and the gauge group G.

In nonabelian Yang–Mills theories, and where D is the

Bianchi identity

is satisfied.

In

pure gauge at spatial infinity
. This means the field strength

vanishes at infinity. The name instanton derives from the fact that these fields are localized in space and (Euclidean) time – in other words, at a specific instant.

The case of instantons on the two-dimensional space may be easier to visualise because it admits the simplest case of the gauge group, namely U(1), that is an abelian group. In this case the field A can be visualised as simply a vector field. An instanton is a configuration where, for example, the arrows point away from a central point (i.e., a "hedgehog" state). In Euclidean four dimensions, , abelian instantons are impossible.

The field configuration of an instanton is very different from that of the

vacuum. Because of this instantons cannot be studied by using Feynman diagrams, which only include perturbative effects. Instantons are fundamentally non-perturbative
.

The Yang–Mills energy is given by

where ∗ is the

Chern–Simons invariant can be defined at the 3-space boundary. This is equivalent, via Stokes' theorem, to taking the integral

This is a homotopy invariant and it tells us which

homotopy class
the instanton belongs to.

Since the integral of a nonnegative

integrand
is always nonnegative,

for all real θ. So, this means

If this bound is saturated, then the solution is a

homotopy invariant
.

In the Standard Model instantons are expected to be present both in the

Black holes and, of course, the vacuum structure of QCD. For example, in oriented string theories
, a Dp brane is a gauge theory instanton in the world volume (p + 5)-dimensional U(N) gauge theory on a stack of N D(p + 4)-branes.

Various numbers of dimensions

Instantons play a central role in the nonperturbative dynamics of gauge theories. The kind of physical excitation that yields an instanton depends on the number of dimensions of the spacetime, but, surprisingly, the formalism for dealing with these instantons is relatively dimension-independent.

In 4-dimensional gauge theories, as described in the previous section, instantons are gauge bundles with a nontrivial

Pontrjagin class
.

In 3-dimensional gauge theories with

Higgs fields, 't Hooft–Polyakov monopoles play the role of instantons. In his 1977 paper Quark Confinement and Topology of Gauge Groups, Alexander Polyakov demonstrated that instanton effects in 3-dimensional QED coupled to a scalar field lead to a mass for the photon
.

In 2-dimensional abelian gauge theories worldsheet instantons are magnetic vortices. They are responsible for many nonperturbative effects in string theory, playing a central role in mirror symmetry.

In 1-dimensional

tunneling
, which is invisible in perturbation theory.

4d supersymmetric gauge theories

Supersymmetric gauge theories often obey nonrenormalization theorems, which restrict the kinds of quantum corrections which are allowed. Many of these theorems only apply to corrections calculable in perturbation theory and so instantons, which are not seen in perturbation theory, provide the only corrections to these quantities.

Field theoretic techniques for instanton calculations in supersymmetric theories were extensively studied in the 1980s by multiple authors. Because supersymmetry guarantees the cancellation of fermionic vs. bosonic non-zero modes in the instanton background, the involved 't Hooft computation of the instanton saddle point reduces to an integration over zero modes.

In N = 1 supersymmetric gauge theories instantons can modify the

chiral matter
than the number of colors in the special unitary gauge group, because in the presence of fewer flavors an unbroken nonabelian gauge symmetry leads to an infrared divergence and in the case of more flavors the contribution is equal to zero. For this special choice of chiral matter, the vacuum expectation values of the matter scalar fields can be chosen to completely break the gauge symmetry at weak coupling, allowing a reliable semi-classical saddle point calculation to proceed. By then considering perturbations by various mass terms they were able to calculate the superpotential in the presence of arbitrary numbers of colors and flavors, valid even when the theory is no longer weakly coupled.

In N = 2 supersymmetric gauge theories the superpotential receives no quantum corrections. However the correction to the metric of the moduli space of vacua from instantons was calculated in a series of papers. First, the one instanton correction was calculated by Nathan Seiberg in Supersymmetry and Nonperturbative beta Functions. The full set of corrections for SU(2) Yang–Mills theory was calculated by Nathan Seiberg and Edward Witten in "Electric – magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang–Mills theory," in the process creating a subject that is today known as Seiberg–Witten theory. They extended their calculation to SU(2) gauge theories with fundamental matter in Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. These results were later extended for various gauge groups and matter contents, and the direct gauge theory derivation was also obtained in most cases. For gauge theories with gauge group U(N) the Seiberg–Witten geometry has been derived from gauge theory using Nekrasov partition functions in 2003 by Nikita Nekrasov and Andrei Okounkov and independently by Hiraku Nakajima and Kota Yoshioka.

In N = 4 supersymmetric gauge theories the instantons do not lead to quantum corrections for the metric on the moduli space of vacua.

Explicit solutions on R4

An ansatz provided by Corrigan and Fairlie provides a solution to the anti-self dual Yang–Mills equations with gauge group SU(2) from any harmonic function on .[13][14] The ansatz gives explicit expressions for the gauge field and can be used to construct solutions with arbitrarily large instanton number.

Defining the antisymmetric -valued objects as

where Greek indices run from 1 to 4, Latin indices run from 1 to 3, and is a basis of satisfying . Then
is a solution as long as is harmonic.

In four dimensions, the fundamental solution to Laplace's equation is for any fixed . Superposing of these gives -soliton solutions of the form

All solutions of instanton number 1 or 2 are of this form, but for larger instanton number there are solutions not of this form.

See also

References and notes

Notes
  1. ^ Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles: the curves that intersect <0,0,0,1> have infinite radius (= straight line).
  2. Non-abelian gauge theory
  3. ^ See also: Pseudo-Goldstone boson
Citations
  1. ^ Instantons in Gauge Theories. Edited by Mikhail A. Shifman. World Scientific, 1994.
  2. ^ Interactions Between Charged Particles in a Magnetic Field. By Hrachya Nersisyan, Christian Toepffer, Günter Zwicknagel. Springer, Apr 19, 2007. Pg 23
  3. ^ Large-Order Behaviour of Perturbation Theory. Edited by J.C. Le Guillou, J. Zinn-Justin. Elsevier, Dec 2, 2012. Pg. 170.
  4. ^
    ISSN 0038-5670
    .
  5. ^ "Yang-Mills instanton in nLab". ncatlab.org. Retrieved 2023-04-11.
  6. ^ See, for instance, Nigel Hitchin's paper "Self-Duality Equations on Riemann Surface".
  7. ; formula (18.175b), p. 525.
  8. .
  9. ^ a b Harald J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific (Singapore, 2012).
  10. ISSN 0370-2693
    .
  11. .
  12. .
  13. .
  14. .
General

External links

  • The dictionary definition of instanton at Wiktionary