Transpiration cooling

Source: Wikipedia, the free encyclopedia.

Transpiration cooling is a thermodynamic process where

radiative[1] heat flux coming into the structure from the surrounding space.[2]

One approach to transpiration cooling is to move liquid through small pores in the outer wall of a body leading to

evaporative cooling. Other approaches are possible.[2][3]

Applications

Transpiration cooling is used in the

Transpiration cooling is one of a variety of cooling techniques that may be used to reduce

ablative cooling, radiative cooling, heat sink cooling and dump cooling.[5]

Transpiration cooling is being considered for use in space vehicles

thermal protection system of the reentering spacecraft.[8][9][1][10]
SpaceX publicly mentioned such a system in 2019 for use on their Starship reusable second stage and orbital spacecraft to mitigate the harsh conditions of reentry. The design concept envisioned a double stainless-steel skin, with active coolant flowing between the two layers, with some areas additionally containing multiple small pores that would allow for transpiration cooling.[8][11][1] After design and testing in terrestrial labs, SpaceX subsequently stated that although an alternative heat mitigation approach—using low-cost ceramic tiles on the windward side of Starship—was being developed,
US law prevents SpaceX from releasing such information.[14]

See also

References

  1. ^ a b c https://www.teslarati.com/spacex-ceo-elon-musk-starship-transpiring-steel-heat-shield-interview/ Archived 2019-01-24 at the Wayback Machine SpaceX CEO Elon Musk explains Starship's "transpiring" steel heat shield in Q&A], Eric Ralph, Teslarati News, 23 January 2019, accessed 30 January 2019
  2. ^ a b Transpiration Cooling Archived 2019-01-30 at the Wayback Machine, Thermopedia.com, accessed 30 January 2019.
  3. ^
    S2CID 139312401
    .
  4. ^ Transpiration Cooling Systems for Jet Engine Turbines and Hypersonic Flight Archived 2020-08-02 at the Wayback Machine, accessed 30 January 2019.
  5. ^ .
  6. .
  7. ^ Hermann, T.; Ifti, H. S.; McGilvray, M.; Doherty, L.; Geraets, R.P. (26 November 2018). Mixing characteristics in a hypersonic flow around a transpiration cooled flat plate model. Archived from the original on 10 October 2020. Retrieved 10 October 2020.
  8. ^ a b Gebhardt, Chris (3 April 2019). "Starhopper conducts Raptor Static Fire test". NASASpaceFlight.com. Archived from the original on 4 April 2019. Retrieved 4 April 2019. Transpiration cooling is the act of pumping coolant – in this case, liquid methane – through the skin structure of Starship to absorb additional heat in particular areas of the vehicle during reentry.
  9. ^ https://www.space.com/43101-elon-musk-explains-stainless-steel-starship.html Archived 2019-02-03 at the Wayback Machine Why Elon Musk Turned to Stainless Steel for SpaceX's Starship Mars Rocket], Mike Wall, space.com, 23 January 2019, accessed 30 January 2019.
  10. ^ "SpaceX's steel Starship glows during Earth reentry in first high-quality render". 26 March 2019. Archived from the original on 2019-03-26. Retrieved 2019-03-26.
  11. ^ SpaceX Starship Will "Bleed Water" From Tiny Holes, Says Elon Musk Archived 2019-01-24 at the Wayback Machine. Kristin Houser, Futurism. 22 January 2019.
  12. ^ Could do it, but we developed low cost reusable tiles that are much lighter than transpiration cooling & quite robust Archived 2019-09-24 at the Wayback Machine, Elon Musk, 24 September 2019, accessed 24 September 2019.
  13. ^ Ralph, Eric. "SpaceX tests ceramic Starship heat shield tiles on Starhopper's final flight test". Teslarati. Archived from the original on 24 September 2019. Retrieved 8 September 2019.
  14. ^ Q: Are you still considering transpiration cooling for most vulnerable hotspots or are the heat shield tiles tough enough? A: It might be used in some areas. ITAR laws prevent us from being too specific about solutions. Archived 2020-10-10 at the Wayback Machine, Elon Musk, 9 October 2020, accessed 10 October 2020.