Universal Rocket

Source: Wikipedia, the free encyclopedia.

The Universal Rocket or UR family of

carrier rocket
.

UR-100

The UR-100 and its variants (e.g. UR-100N) were the standard small

Strela and Rokot carrier rockets are based on the UR-100N. A number of UR-100Ns have been earmarked for use as launch vehicles for the Avangard maneuverable reentry vehicle.[2]

UR-200

The UR-200 was intended to be a larger

ICBM that could also be used as a carrier rocket. Nine test flights were made between 4 November 1963, and 20 October 1964, before the program was cancelled in favor of Mikhail Yangel's R-36 missile and Tsyklon carrier rocket derivative.[3]

UR-500

The UR-500 was designed to be a very large

Proton, the latest version of which is still in service as of 2023.[5]

UR-700

UR-700

The UR-700 was

cosmonauts to the Moon on a direct ascent mission in the LK-1 lunar craft. Sergei Korolev's N1 booster and Soyuz 7K-LOK / LK Lander were chosen instead for the mission, and it never left the drawing board. It would have had a payload capacity to low Earth orbit of 151 metric tons.[6]

Superficially, the UR-700 was of the well-known design of Soviet launchers with a central core stack and lateral strap-on boosters. But one distinguishing feature was that the engines of the first stage were cross-fed with fuel and oxidizer from the tanks of the strap-on boosters during the initial flight phase. This meant that when the boosters were spent and jettisoned, the central stack still flew with full tanks, thus reducing dead weight and increasing a possible payload.[7]

A nuclear variant known as the UR-700A was also designed to have a much larger payload capacity of 750t (1,500,000 lb) to LEO.[8]

UR-900

The UR-900 was the ultimate Universal Rocket application, a super heavy-lift launch vehicle for crewed expeditions to other planets, especially Mars. Proposed in 1969, it would have had 15 RD-270 modules in the first and second stages, and the third and fourth stages were based on those of the UR-500. The UR-900 would have stood 90 metres (295 ft) tall, had a liftoff thrust of 94,000 kN (21,132,000 lbf), and be able to place 240 tons into low Earth orbit. Like the UR-700, it remained a paper project only.[9]

See also

References

  1. .
  2. ^ "Russia to use SS-19 ICBMs as carriers for Avangard hypersonic glide vehicles – source".
  3. ^ Boris Chertok. Rockets and People: Volume IV THe Moon Race (PDF) (Report). NASA. p. 21. Retrieved 7 May 2023.
  4. ^ Mark Wade. "Proton". Astronautix.com. Archived from the original on 20 August 2016.
  5. NASASpaceFlight
    . Retrieved 2 March 2023.
  6. ^ "UR-700". Archived from the original on 20 August 2016.
  7. ^ "UR-700". Archived from the original on 20 August 2016.
  8. ^ "UR-700M". www.astronautix.com. Archived from the original on 26 July 2016. Retrieved 10 October 2019.
  9. ^ "UR-900". Archived from the original on 28 August 2016.

Further reading