User:Ezra kucur/Settlement of the Americas

Source: Wikipedia, the free encyclopedia.

Article Draft

Chronology, reasons for, and sources of migration[edit]

The Indigenous peoples of the Americas have ascertained archaeological presence in the Americas dating back to about 15,000 years ago. More recent research, however, suggests a human presence dating to between 18,000 and 26,000 years ago, meaning that human migrations occurred during the Last Glacial Maximum. There remain uncertainties regarding the precise dating of individual sites and regarding conclusions drawn from population genetics studies of contemporary Native Americans.

Chronology

In the early 21st century, the models of the chronology of migration are divided into two general approaches:

The first is the short chronology theory, that the first migration occurred after the LGM, which went into decline after about 19,000 years ago,and was then followed by successive waves of immigrants.

The second theory is the long chronology theory, which proposes that the first group of people entered Beringia, including ice-free parts of Alaska, at a much earlier date, possibly 40,000 years ago, followed by a much later second wave of immigrants.

The

Topper Site
being 16,000 years old, at a time when the glacial maximum would have theoretically allowed for lower coastlines.

It has often been suggested that an ice-free corridor, in what is now Western Canada, would have allowed migration before the beginning of the Holocene. However, a 2016 study has argued against this, suggesting that the peopling of North America via such a corridor is unlikely to significantly pre-date the earliest Clovis sites. The study concludes that the ice-free corridor in what is now Alberta and British Columbia "was gradually taken over by a boreal forest dominated by spruce and pine trees" and that the "Clovis people likely came from the south, not the north, perhaps following wild animals such as bison". An alternative hypothesis for the peopling of America is coastal migration, which may have been feasible along the deglaciated (but now submerged) coastline of the Pacific Northwest from about 16,000 years ago.

Evidence for pre-LGM human presence

Further information:

Genetic history of indigenous peoples of the Americas § Paleoamericans, and Fuegians § Alternative origin speculations

Pre-Last Glacial Maximum migration across Beringia into the Americas is strongly supported by the 2021 discovery of human footprints in relict lake sediments near

Meadowcroft Rock Shelter
in Pennsylvania.

At the Old Crow Flats, mammoth bones have been found that are broken in distinctive ways indicating human butchery. The radiocarbon dates on these vary between 25,000 and 40,000 years BP. Also, stone microflakes have been found in the area indicating tool production. Previously, the interpretations of butcher marks and the geologic association of bones at the Bluefish Cave and Old Crow Flats sites, and the related Bonnet Plume site, have been called into question. In addition to disputed archaeological sites, support for pre-LGM human presence has been found in lake sediment records of northern Alaska. Biomarker and microfossil analyses of sediments from Lake E5 and Burial Lake in suggest human presence in eastern Beringia as early as 34,000 years ago. These analyses are indeed compelling in that they corroborate the inferences made from the Bluefish Cave and Old Crow Flats sites.

In 2020, evidence emerged for a new pre-LGM site in North-Central

Australoid. This interpretation was challenged in a 2003 review which concluded the features in question could also have arisen by genetic drift. In November 2018, scientists of the University of São Paulo and Harvard University released a study that contradicts the alleged Australo-Melanesian
origin of Luzia. Using DNA sequencing, the results showed that Luzia was entirely Amerindian, genetically.

The ages of the earliest positively identified artifacts at the

cal years BP
).

Stones described as probable tools,

mastodon skeleton which appeared to have been processed by humans. The mastodon skeleton was dated by thorium-230/uranium radiometric analysis, using diffusion–adsorption–decay dating models, to 130.7 ± 9.4 thousand years ago. No human bones were found and expert reaction was mixed; claims of tools and bone processing were called "not plausible" by Prof. Tom Dillehay
.

The

Yana River Rhino Horn site (RHS) has dated human occupation of eastern Arctic Siberia to 27k 14C years BP (31.3k cal years BP). That date has been interpreted by some as evidence that migration into Beringia was imminent, lending credence to occupation of Beringia during the LGM. However, the Yana RHS
date is from the beginning of the cooling period that led into the LGM. A compilation of archaeological site dates throughout eastern Siberia suggest that the cooling period caused a retreat of humans southwards. Pre-LGM lithic evidence in Siberia indicate a settled lifestyle that was based on local resources, while post-LGM lithic evidence indicate a more migratory lifestyle.

The oldest archaeological sites on the Alaskan side of Beringia date to 12k 14C years BP (14k cal years BP). It is possible that a small founder population had entered Beringia before that time. However, archaeological sites that date closer to the LGM on either the Siberian or the Alaskan side of Beringia are lacking. Biomarker and microfossil analyses of sediments from Lake E5 and Burial Lake in northern Alaska suggest human presence in eastern Beringia as early as 34,000 years ago. These sedimentary analyses have been suggested to be the only possibly recoverable remnants of humans living in Alaska during the last Glacial period.

Genomic age estimates

Further information:

Genetic history of indigenous peoples of the Americas

Studies of

human mitochondrial DNA haplogroups (mtDNA haplogroups) characteristic of Native American populations. Models of molecular evolution rates were used to estimate the ages at which Native American DNA lineages branched off from their parent lineages in Asia and to deduce the ages of demographic events. One model (Tammetal 2007) based on Native American mtDNA Haplotypes (Figure 2) proposes that migration into Beringia occurred between 30k and 25k cal years BP, with migration into the Americas occurring around 10k to 15k years after isolation of the small founding population
. Another model (Kitchen et al. 2008) proposes that migration into Beringia occurred approximately 36k cal years BP, followed by 20k years of isolation in Beringia. A third model (Nomatto et al. 2009) proposes that migration into Beringia occurred between 40k and 30k cal years BP, with a pre-LGM migration into the Americas followed by isolation of the northern population following closure of the ice-free corridor. Evidence of Australo-Melanesians admixture in Amazonian populations was found by Skoglund and Reich (2016).

A study of the diversification of mtDNA Haplogroups C and D from southern Siberia and eastern Asia, respectively, suggests that the parent lineage (Subhaplogroup D4h) of Subhaplogroup D4h3, a lineage found among Native Americans and Han Chinese, emerged around 20k cal years BP, constraining the emergence of D4h3 to post-LGM. Age estimates based on Y-chromosome micro-satellite diversity place origin of the American

Haplogroup Q1a3a (Y-DNA)
at around 10k to 15k cal years BP. Greater consistency of DNA molecular evolution rate models with each other and with archaeological data may be gained by the use of dated fossil DNA to calibrate molecular evolution rates.

Megafaunal Migrations (this is an new section with original content)

Although there is no archaeological evidence that can be used to direct support a coastal migration route during the Last Glacial Maximum, genetic analysis has been used to support this thesis. In addition to human genetic lineage, megafaunal DNA linage can be used to trace movements of megafauna – large mammalian – as well as the early human groups who hunted them.

North American extinction event that occurred at the end of the Pleistocene. Their genome, however, contains evidence of a bottleneck – something that can be used to test hypothesis on migrations between the two continents.[1] Early human groups were largely nomadic, relying on following food sources for survival. Mobility was part of what made humans successful. As nomadic groups, early humans likely followed the food from Eurasia to the Americas – part of the reason why tracing megafaunal DNA is so helpful for garnering insight to these migratory patterns.[2]

The grey wolf originated in the Americas and migrated into Eurasia prior to the Last Glacial Maximum – during which it was believed that remaining populations of the grey wolf residing in North America faced extinction and were isolated from the rest of the population. This, however, may not be the case. Radiocarbon dating of ancient grey wolf remains found in permafrost deposits in Alaska show a continuous exchange of population from 12,500 radiocarbon years BP to beyond radiocarbon dating capabilities. This indicates that there was viable passage for grey wolf populations to exchange between the two continents.[3]

These faunas' ability to exchange populations during the period of the Last Glacial Maximum along with genetic evidence found from early human remains in the Americas provides evidence to support pre-Clovis migrations into the Americas.

  1. PMID
    27274051.
  2. ^ Society, National Geographic (2019-08-19). "Hunter-Gatherer Culture". National Geographic Society. Retrieved 2022-02-18.
  3. ISSN
    0960-9822.