User:Rigpapi/sandbox

Source: Wikipedia, the free encyclopedia.


Woofer speaker drivers

An electrodynamic speaker driver, often called simply a blast processor when the type is implicit, is an individual

rotary woofers
.

The

Chester W. Rice, which creates sound with a coil of wire called a voice coil suspended between the poles of a magnet. There are others which are far less widely used: electrostatic drivers, piezoelectric drivers, planar magnetic drivers, Heil air motion drivers, and ionic drivers, among others.[1]

Components

Cut-away view of a dynamic loudspeaker

Speaker drivers include a

PET film
plastic film as the cone, dome or radiator.

All speaker drivers have a means of electrically inducing back-and-forth motion. Typically there is a tightly wound coil of insulated wire (known as a voice coil) attached to the neck of the driver's cone. In a ribbon speaker the voice coil may be printed or bonded onto a sheet of very thin paper, aluminum, fiberglass or plastic. This cone, dome or other radiator is mounted at its outer edge by a flexible surround to a rigid frame which supports a permanent magnet in close proximity to the voice coil. For the sake of efficiency the relatively lightweight voice coil and cone are the moving parts of the driver, whereas the much heavier magnet remains stationary. Other typical components are a spider or damper, used as the rear suspension element, simple terminals or binding posts to connect the audio signal, and possibly a compliant gasket to seal the joint between the chassis and enclosure.

Enclosures and acoustic isolation

Drivers are almost universally mounted into a rigid enclosure of wood, plastic, or occasionally metal. This

grille, fabric mesh
, or other acoustically neutral screen is generally provided to cosmetically conceal the drivers and hardware, and to protect the driver from physical damage.

Operation

In operation, a signal is delivered to the voice coil by means of electrical wires, from the amplifier through

sound waves
.

The spider and surround act as a spring restoring mechanism for motion away from the balanced position established when the driver was assembled at the factory. In addition, each contributes to centering the voice coil and cone, both concentrically within the magnet assembly, and front-to-back, restoring the voice coil to a critical position within the magnetic gap, neither toward one end nor the other.

The voice coil and magnet essentially form a linear motor working against the centering "spring tension" of the spider and surround. If there were no restriction on travel distance imposed by the spider and surround, the voice coil could be ejected from the magnet assembly at high power levels, or travel inward deep enough to collide with the back of the magnet assembly. The majority of speaker drivers work only against the centering forces of the spider and surround, and do not actively monitor the position of the driver element or attempt to precisely position it. Some speaker driver designs have provisions to do so (typically termed servomechanisms); these are generally used only in woofers and especially subwoofers, due to the greatly increased cone excursions required at those frequencies in a driver whose cone size is well under the wavelength of some of the sounds it is made to reproduce (ie, bass frequencies below perhaps 100 Hz or so).

Performance characteristics

Speaker drivers may be designed to operate within a broad or narrow

subwoofers
.

Applications

Speaker drivers are the primary means for sound reproduction. They are used among other places in audio applications such as loudspeakers,

portable radios, toys
, and in many electronics devices that are designed to emit sound.

See also

References

  1. ^ "The development of the loudspeaker Prof. Dr.–Ing. Dietmar Rudolph March 23, 2013" (PDF).
  2. ^ "Electrodynamic loudspeaker patent US7676053B2".

Category:Loudspeakers