Word problem (mathematics)

Source: Wikipedia, the free encyclopedia.

In

deep results of computational theory concern the undecidability of this question in many important cases.[1]

Background and motivation

In computer algebra one often wishes to encode mathematical expressions using an expression tree. But there are often multiple equivalent expression trees. The question naturally arises of whether there is an algorithm which, given as input two expressions, decides whether they represent the same element. Such an algorithm is called a solution to the word problem. For example, imagine that are symbols representing real numbers - then a relevant solution to the word problem would, given the input , produce the output EQUAL, and similarly produce NOT_EQUAL from .

The most direct solution to a word problem takes the form of a normal form theorem and algorithm which maps every element in an

syntactic equality.[1]
For example one might decide that is the normal form of , , and , and devise a transformation system to rewrite those expressions to that form, in the process proving that all equivalent expressions will be rewritten to the same normal form.[2] But not all solutions to the word problem use a normal form theorem - there are algebraic properties which indirectly imply the existence of an algorithm.[1]

While the word problem asks whether two terms containing constants are equal, a proper extension of the word problem known as the unification problem asks whether two terms containing variables have instances that are equal, or in other words whether the equation has any solutions. As a common example, is a word problem in the integer group , while is a unification problem in the same group; since the former terms happen to be equal in , the latter problem has the substitution as a solution.

History

One of the most deeply studied cases of the word problem is in the theory of

Novikov-Boone theorem is as follows:[3][4]

The word problem for semi-Thue systems

The accessibility problem for

string rewriting systems
(semi-Thue systems or semigroups) can be stated as follows: Given a semi-Thue system and two words (strings) , can be transformed into by applying rules from ? Note that the rewriting here is one-way. The word problem is the accessibility problem for symmetric rewrite relations, i.e. Thue systems.[27]

The accessibility and word problems are

ground terms is not decidable for certain finitely presented semigroups.[29][30]

The word problem for groups

Given a

presentation
for a group G, the word problem is the algorithmic problem of deciding, given as input two words in S, whether they represent the same element of G. The word problem is one of three algorithmic problems for groups proposed by Max Dehn in 1911. It was shown by Pyotr Novikov in 1955 that there exists a finitely presented group G such that the word problem for G is undecidable.[31]

The word problem in combinatorial calculus and lambda calculus

One of the earliest proofs that a word problem is undecidable was for combinatory logic: when are two strings of combinators equivalent? Because combinators encode all possible Turing machines, and the equivalence of two Turing machines is undecidable, it follows that the equivalence of two strings of combinators is undecidable. Alonzo Church observed this in 1936.[32]

Likewise, one has essentially the same problem in (untyped) lambda calculus: given two distinct lambda expressions, there is no algorithm which can discern whether they are equivalent or not; equivalence is undecidable. For several typed variants of the lambda calculus, equivalence is decidable by comparison of normal forms.

The word problem for abstract rewriting systems

Solving the word problem: deciding if usually requires heuristic search (red, green), while deciding is straightforward (grey).

The word problem for an abstract rewriting system (ARS) is quite succinct: given objects x and y are they equivalent under ?[29] The word problem for an ARS is undecidable in general. However, there is a computable solution for the word problem in the specific case where every object reduces to a unique normal form in a finite number of steps (i.e. the system is convergent): two objects are equivalent under if and only if they reduce to the same normal form.[33] The

term rewriting system
.

The word problem in universal algebra

In

generating set A, a collection of operations on A of finite arity, and a finite set of identities that these operations must satisfy. The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras.[1]

The word problem on free Heyting algebras is difficult.[34] The only known results are that the free Heyting algebra on one generator is infinite, and that the free complete Heyting algebra on one generator exists (and has one more element than the free Heyting algebra).

The word problem for free lattices

Example computation of xz ~ xz∧(xy)
xz∧(xy) ~ xz
by 5. since xz ~ xz
by 1. since xz = xz
 
 
xz ~ xz∧(xy)
by 7. since xz ~ xz and xz ~ xy
by 1. since xz = xz by 6. since xz ~ x
by 5. since x ~ x
by 1. since x = x

The word problem on

nullary operations) 0 and 1. The set of all well-formed expressions
that can be formulated using these operations on elements from a given set of generators X will be called W(X). This set of words contains many expressions that turn out to denote equal values in every lattice. For example, if a is some element of X, then a ∨ 1 = 1 and a ∧ 1 = a. The word problem for free bounded lattices is the problem of determining which of these elements of W(X) denote the same element in the free bounded lattice FX, and hence in every bounded lattice.

The word problem may be resolved as follows. A relation ≤~ on W(X) may be defined inductively by setting w~ v if and only if one of the following holds:

  1.   w = v (this can be restricted to the case where w and v are elements of X),
  2.   w = 0,
  3.   v = 1,
  4.   w = w1w2 and both w1~ v and w2~ v hold,
  5.   w = w1w2 and either w1~ v or w2~ v holds,
  6.   v = v1v2 and either w~ v1 or w~ v2 holds,
  7.   v = v1v2 and both w~ v1 and w~ v2 hold.

This defines a

quotient set W(X)/~ is the free bounded lattice FX.[35][36] The equivalence classes
of W(X)/~ are the sets of all words w and v with w~ v and v~ w. Two well-formed words v and w in W(X) denote the same value in every bounded lattice if and only if w~ v and v~ w; the latter conditions can be effectively decided using the above inductive definition. The table shows an example computation to show that the words xz and xz∧(xy) denote the same value in every bounded lattice. The case of lattices that are not bounded is treated similarly, omitting rules 2 and 3 in the above construction of ≤~.

Example: A term rewriting system to decide the word problem in the free group

Bläsius and Bürckert [37] demonstrate the

Knuth–Bendix algorithm
on an axiom set for groups. The algorithm yields a
term rewrite system that transforms every term into a unique normal form.[38]
The rewrite rules are numbered incontiguous since some rules became redundant and were deleted during the algorithm run. The equality of two terms follows from the axioms if and only if both terms are transformed into literally the same normal form term. For example, the terms

, and

share the same normal form, viz. ; therefore both terms are equal in every group. As another example, the term and has the normal form and , respectively. Since the normal forms are literally different, the original terms cannot be equal in every group. In fact, they are usually different in non-abelian groups.

Group axioms used in Knuth–Bendix completion
A1
A2
A3    
Term rewrite system obtained from Knuth–Bendix completion
R1
R2
R3
R4
R8
R11
R12
R13
R14
R17    

See also

References

  1. ^ .
  2. .
  3. ^ . Retrieved 6 December 2021.
  4. .
  5. ].
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. ].
  13. ^ See History of the Church–Turing thesis. The dates are based on On Formally Undecidable Propositions of Principia Mathematica and Related Systems and Systems of Logic Based on Ordinals.
  14. S2CID 30320278
    . Retrieved 6 December 2021.
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. ^ Simpson, Stephen G. (18 May 2005). "A Slick Proof of the Unsolvability of the Word Problem for Finitely Presented Groups" (PDF). Retrieved 6 December 2021.
  26. .
  27. ^ .
  28. . Retrieved 5 December 2021.
  29. ^ .
  30. ^
  31. ^ Novikov, P. S. (1955). "On the algorithmic unsolvability of the word problem in group theory". Trudy Mat. Inst. Steklov (in Russian). 44: 1–143.
  32. .
  33. .
  34. . (See chapter 1, paragraph 4.11)
  35. .
  36. .
  37. ^ K. H. Bläsius and H.-J. Bürckert, ed. (1992). Deduktionsssysteme. Oldenbourg. p. 291.; here: p.126, 134
  38. ^ Apply rules in any order to a term, as long as possible; the result doesn't depend on the order; it is the term's normal form.