Word problem (mathematics)
In
Background and motivation
In computer algebra one often wishes to encode mathematical expressions using an expression tree. But there are often multiple equivalent expression trees. The question naturally arises of whether there is an algorithm which, given as input two expressions, decides whether they represent the same element. Such an algorithm is called a solution to the word problem. For example, imagine that are symbols representing real numbers - then a relevant solution to the word problem would, given the input , produce the output EQUAL
, and similarly produce NOT_EQUAL
from .
The most direct solution to a word problem takes the form of a normal form theorem and algorithm which maps every element in an
While the word problem asks whether two terms containing constants are equal, a proper extension of the word problem known as the unification problem asks whether two terms containing variables have instances that are equal, or in other words whether the equation has any solutions. As a common example, is a word problem in the integer group , while is a unification problem in the same group; since the former terms happen to be equal in , the latter problem has the substitution as a solution.
History
One of the most deeply studied cases of the word problem is in the theory of
- 1910Axel Thue poses a general problem of term rewriting on tree-like structures. He states "A solution of this problem in the most general case may perhaps be connected with unsurmountable difficulties".[5][6] :
- 1911Max Dehn poses the word problem for finitely presented groups.[7] :
- 1912Dehn presents :
- 1914Axel Thue poses the word problem for finitely presented semigroups.[12] :
- 1930The Church-Turing thesis emerges, defining formal notions of computability and undecidability.[13]– 1938 :
- 1947Emil Post and Andrey Markov Jr. independently construct finitely presented semigroups with unsolvable word problem.[14][15] Post's construction is built on Turing machines while Markov's uses Post's normal systems.[3]:
- 1950cancellation semigroups is unsolvable,[16] by furthering Post's construction. The proof is difficult to follow but marks a turning point in the word problem for groups.[3]: 342 :
- 1955Britton's Lemma.[3]: 355 :
- 1954William Boone independently shows the word problem for groups is unsolvable, using Post's semigroup construction.[18][19] – 1957 :
- 1957John Britton gives another proof that the word problem for groups is unsolvable, based on Turing's cancellation semigroups result and some of Britton's earlier work.[20] An early version of Britton's Lemma appears.[3]: 355 – 1958 :
- 1958Boone publishes a simplified version of his construction.[21][22] – 1959 :
- 1961Graham Higman characterises the subgroups of finitely presented groups with Higman's embedding theorem,[23] connecting recursion theory with group theory in an unexpected way and giving a very different proof of the unsolvability of the word problem.[3] :
- 1961Britton presents a greatly simplified version of Boone's 1959 proof that the word problem for groups is unsolvable.Britton's Lemma. This proof has been used in a graduate course, although more modern and condensed proofs exist.[25]– 1963 :
- 1977Gennady Makanin proves that the existential theory of equations over free monoids is solvable.[26] :
The word problem for semi-Thue systems
The accessibility problem for
The accessibility and word problems are
The word problem for groups
Given a
The word problem in combinatorial calculus and lambda calculus
One of the earliest proofs that a word problem is undecidable was for combinatory logic: when are two strings of combinators equivalent? Because combinators encode all possible Turing machines, and the equivalence of two Turing machines is undecidable, it follows that the equivalence of two strings of combinators is undecidable. Alonzo Church observed this in 1936.[32]
Likewise, one has essentially the same problem in (untyped) lambda calculus: given two distinct lambda expressions, there is no algorithm which can discern whether they are equivalent or not; equivalence is undecidable. For several typed variants of the lambda calculus, equivalence is decidable by comparison of normal forms.
The word problem for abstract rewriting systems

The word problem for an abstract rewriting system (ARS) is quite succinct: given objects x and y are they equivalent under ?[29] The word problem for an ARS is undecidable in general. However, there is a computable solution for the word problem in the specific case where every object reduces to a unique normal form in a finite number of steps (i.e. the system is convergent): two objects are equivalent under if and only if they reduce to the same normal form.[33] The
The word problem in universal algebra
In
The word problem on free Heyting algebras is difficult.[34] The only known results are that the free Heyting algebra on one generator is infinite, and that the free complete Heyting algebra on one generator exists (and has one more element than the free Heyting algebra).
The word problem for free lattices
|
|
The word problem on
The word problem may be resolved as follows. A relation ≤~ on W(X) may be defined inductively by setting w ≤~ v if and only if one of the following holds:
- w = v (this can be restricted to the case where w and v are elements of X),
- w = 0,
- v = 1,
- w = w1 ∨ w2 and both w1 ≤~ v and w2 ≤~ v hold,
- w = w1 ∧ w2 and either w1 ≤~ v or w2 ≤~ v holds,
- v = v1 ∨ v2 and either w ≤~ v1 or w ≤~ v2 holds,
- v = v1 ∧ v2 and both w ≤~ v1 and w ≤~ v2 hold.
This defines a
of W(X)/~ are the sets of all words w and v with w ≤~ v and v ≤~ w. Two well-formed words v and w in W(X) denote the same value in every bounded lattice if and only if w ≤~ v and v ≤~ w; the latter conditions can be effectively decided using the above inductive definition. The table shows an example computation to show that the words x∧z and x∧z∧(x∨y) denote the same value in every bounded lattice. The case of lattices that are not bounded is treated similarly, omitting rules 2 and 3 in the above construction of ≤~.Example: A term rewriting system to decide the word problem in the free group
Bläsius and Bürckert [37] demonstrate the
- , and
share the same normal form, viz. ; therefore both terms are equal in every group. As another example, the term and has the normal form and , respectively. Since the normal forms are literally different, the original terms cannot be equal in every group. In fact, they are usually different in non-abelian groups.
A1 | ||
A2 | ||
A3 |
R1 | ||
R2 | ||
R3 | ||
R4 | ||
R8 | ||
R11 | ||
R12 | ||
R13 | ||
R14 | ||
R17 |
See also
References
- ^ .
- ISBN 1568811586.
- ^ ISBN 9781107338579. Retrieved 6 December 2021.
- .
- arXiv:1703.09750 [math.HO].
- MR 1798015.
- S2CID 123478582.
- S2CID 122988176.
- .
- S2CID 36469569.
- S2CID 120429853.
- ].
- ^ See History of the Church–Turing thesis. The dates are based on On Formally Undecidable Propositions of Principia Mathematica and Related Systems and Systems of Logic Based on Ordinals.
- S2CID 30320278. Retrieved 6 December 2021.
- JSTOR 2266407.
- JSTOR 1969481.
- Zbl 0068.01301.
- .
- .
- .
- Zbl 0086.24701.
- JSTOR 1970103.
- S2CID 120100270.
- JSTOR 1970200.
- ^ Simpson, Stephen G. (18 May 2005). "A Slick Proof of the Unsolvability of the Word Problem for Finitely Presented Groups" (PDF). Retrieved 6 December 2021.
- .
- ^ .
- ISBN 978-1-4613-9437-2. Retrieved 5 December 2021.
- ^ ISBN 978-0-521-77920-3.
- ^
- Matiyasevich, Yu. V. (1967). "Простые примеры неразрешимых ассоциативных исчислений" [Simple examples of undecidable associative calculi]. ISSN 0869-5652.
- Matiyasevich, Yu. V. (1967). "Simple examples of undecidable associative calculi". Soviet Mathematics. 8 (2): 555–557. ISSN 0197-6788.
- Matiyasevich, Yu. V. (1967). "Простые примеры неразрешимых ассоциативных исчислений" [Simple examples of undecidable associative calculi].
- ^ Novikov, P. S. (1955). "On the algorithmic unsolvability of the word problem in group theory". Trudy Mat. Inst. Steklov (in Russian). 44: 1–143.
- ISBN 978-3-540-67778-9.
- .
- ISBN 0-521-23893-5. (See chapter 1, paragraph 4.11)
- JSTOR 1969001.
- JSTOR 1968883.
- ^ K. H. Bläsius and H.-J. Bürckert, ed. (1992). Deduktionsssysteme. Oldenbourg. p. 291.; here: p.126, 134
- ^ Apply rules in any order to a term, as long as possible; the result doesn't depend on the order; it is the term's normal form.