Вариация функции

Материал из Википедии — свободной энциклопедии

В математическом анализе вариацией функции называется числовая характеристика функции одного действительного переменного, связанная с её дифференциальными свойствами. Для функции из отрезка на вещественной прямой в является обобщением понятия длины кривой, задаваемой в этой функцией.

Определение

Пусть . Тогда вариацией (также полной вариацией или полным изменением) функции на отрезке называется следующая величина:

то есть

точная верхняя грань по всем разбиениям
отрезка длин ломаных в , концы которых соответствуют значениям в точках разбиения.

Связанные определения

  • Функции, вариация которых ограничена на отрезке, называются функциями ограниченной вариации, а класс таких функций обозначается или просто .
    • В таком случае определена функция , называющаяся функцией полной вариации для .
  • Положительная вариация вещественнозначной функции на отрезке называется следующая величина:
  • Аналогично определяется отрицательная вариация функции:
  • Таким образом полная вариация функции может быть представлена в виде суммы

Свойства функций ограниченной вариации

Все эти свойства были установлены Жорданом[1][2].

Вычисление вариации

Вариация непрерывно дифференцируемой функции

Если функция принадлежит классу , то есть имеет непрерывную производную первого порядка на отрезке , то  — функция ограниченной вариации на этом отрезке, а вариация вычисляется по формуле:

то есть равна интегралу нормы производной.

История

Функции ограниченной вариации изучались К. Жорданом[1].

Первоначально класс функций с ограниченной вариацией был введён К. Жорданом в связи с обобщением признака Дирихле сходимости рядов Фурье кусочно монотонных функций. Жордан доказал, что ряды Фурье -периодических функций класса сходятся в каждой точке действительной оси. Однако в дальнейшем функции ограниченной вариации нашли широкое применение в различных областях математики, особенно в теории

интеграла Стилтьеса
.

Вариации и обобщения

  • Длина кривой определяется как естественное обобщение вариации на случай отображений в метрическое пространство.

Φ-вариация функции

Рассматривается также класс , который определяется следующим образом:

где () — положительная при монотонно возрастающая непрерывная функция;

 — произвольное разбиение отрезка .

Величина называется -вариацией функции на отрезке .

Если , то функция обладает ограниченной -вариацией на отрезке . Класс всех таких функций обозначается через или просто как [3][нет в источнике]. Определение класса предложено Л. Янгом[англ.][4] (L. С. Young).

Частным случаем классов Янга являются классы Жордана, при этом . Если при , то получаются классы Н. Винера[5] (N. Wiener).

Свойства

Если рассмотреть две функции и такие, что

то для их -вариаций справедливо отношение:

В частности,

при .

См. также

Литература

  • Лебег, А. Интегрирование и отыскание примитивных функций / Пер. с франц. — М.Л.: ОНТИ, 1934. — 324 с.
  • Натансон, И. П. Теория функций вещественной переменной. — М.: Наука, 1974. — 484 с.
  • Бари, Н. К. Тригонометрические ряды. — М.: Государственное издательство физико-математической литературы, 1961. — 936 с.

Примечания

  1. 1 2 Jordan C. Comptes Rendus de l’Académie des Sciences. — 1881. — t. 92. — № 5. — p. 228—230.
  2. Натансон, И. П. Теория функций вещественной переменной. — М.: Наука, 1974. — С. 234—238. — 484 с.
  3. Бари, Н. К. Тригонометрические ряды. — М.: Государственное издательство физико-математической литературы, 1961. — С. 287. — 936 с.
  4. Young L. С. Comptes Rendus de l’Académie des Sciences. — 1937. — t. 204. — № 7. — p. 470—472.
  5. Wiener N. Massachusetts Journal of Mathematics and Physics. — 1924. — v. 3. — p. 72—94.