Вечный двигатель
![]() | Эта статья нуждается в переработке. Пожалуйста, уточните проблему в статье с помощью правилами написания статей . (28 декабря 2018) |
Возможно, эта статья содержит оригинальное исследование. |

Ве́чный дви́гатель (
.Однако, можно создать механизмы, способные работать, хотя и не бесконечно, но неопределённо долго (до износа своих составных частей) без вмешательства человека. В отличие от вечного двигателя, они не нарушают законов термодинамики, поскольку черпают энергию из окружающей среды (например, это может быть энергия Солнца или радиоактивного распада).
Современная классификация вечных двигателей
- Вечный двигатель первого рода — неограниченно долго действующее устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.
- Вечный двигатель второго рода — неограниченно долго действующая машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики[8].
И первое, и второе начала термодинамики были введены как
- Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счёт охлаждения теплового резервуара.
- Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.
Демон Максвелла и броуновский храповик, если бы такие устройства были осуществимы, позволили бы реализовать вечный двигатель второго рода. Однако доказано, что работа таких систем как замкнутых (без обмена энергией с внешней средой) невозможна[уточнить].
История

Первая документально подтверждённая попытка построить вечный двигатель относится к VIII веку: в Баварии была построена магнитная конструкция в виде колеса обозрения. В 1150 году индийский философ Бхаскара предложил свой вечный двигатель[9]. В своём стихотворении он описывает некое колесо с прикреплёнными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум-мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещённых на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе»[10]. Баварская схема и схема Бхаскары в чём-то схожи, но их изобретения при изучении показывают потерю энергии в каждом цикле[9]. Отдельные заметки о вечном двигателе встречаются в арабских рукописях XVI века, хранящихся в Лейдене, Готе и Оксфорде[11].
Эпоха

В 1712 году Иоганн Бесслер, изучив около 300 схем, предложил собственную модель. По легенде, его служанка разоблачила его машину, как хитрое мошенничество[9]
Помимо преданных делу изобретателей в истории происходили случаи разоблачения шарлатанов, пытавшихся выдать свои конструкции со скрытыми источниками энергии за вечные двигатели. Несмотря на то, что никому так и не удалось изобрести вечный двигатель, опыты помогли физикам изучить природу тепловых двигателей[9].
К 1775 году столь много было предложено схем вечных двигателей, отчего
Изобретатели
- Майкл Брэйди
- Дзамбони, Джузеппе
Конструкции вечных двигателей из истории


На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо, в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага, должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.
Однако, если такое колесо изготовить, оно останется неподвижным. Причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.
На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда. Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, — бесконечно вращаться.
Здесь не учтено следующее: выталкивающая сила — это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет уравновешивать или превосходить силу, действующую на остальные баки.
Псевдовечный двигатель
Псевдовечный двигатель (даровой двигатель, мнимый вечный двигатель[15], псевдовечный двигатель[16]) — механизм, способный работать неопределённо долго (до износа своих составных частей) без вмешательства человека, но, в отличие от вечного двигателя, не нарушающий законов термодинамики. Энергию он черпает из окружающей среды (например, это может быть энергия Солнца или радиоактивного распада).
Разновидности
Известны псевдовечные двигатели, использующие: энергию периодических суточных колебаний атмосферного давления[17][18]; энергию теплового расширения вследствие суточных колебаний температуры[19][18]; энергию распада радия[20]; солнечную энергию (магнитно-тепловой двигатель)[21][22].
В 1760-х годах Джон Кокс изобрёл часы, которые получают энергию от изменений атмосферного давления. Такие часы существуют и сегодня и могут идти вечно[9].
Экономическая эффективность
Я. И. Перельман[19] и Н. В. Гулиа[18] пишут, что даровые двигатели экономически невыгодны для промышленного применения из-за малой стоимости производимой энергии по сравнению с капитальными вложениями в их создание и обслуживание.
Например, для завода часов на сутки работы нужна энергия Дж. Если этот механизм проработает лет, то за свой срок службы он выработает энергии Дж. При стоимости механизма в долларов себестоимость производства одного киловатт-часа энергии с его помощью составит тыс. долларов[18].
В. М. Бродянский считает этот вывод неверным, поскольку стоимость устройства не пропорциональна его размерам[16].
Пример псевдовечного двигателя 2-го рода
Анализ конкретной конструкции вечного двигателя 2-го рода может представлять собой нетривиальную задачу, особенно если речь идёт о конструкции сложной или такой, принцип действия которой на первый взгляд вообще непонятен, либо потоки энергии и их источник неочевидны. Зафиксируем, например, один конец работающей на изгиб
Вечное движение
Существует множество физических процессов, где за счет квантовых эффектов движение может происходить практически вечно без потребления энергии, но и без её выделения. Примером являются петлевые токи в сверхпроводниках и вихри в сверхтекучей жидкости.
См. также
- Автомобиль на воде
- Законы термодинамики
- Статистическая механика
Примечания
- ↑ Перельман Я. И. В поисках вечного двигателя (Въ поискахъ вѣчнаго двигателя). — «Природа и люди», 1915, № 32, с. 508—510. На странице 509.
- Ю. С. Осипов ; 2004—2017, т. 5). — ISBN 5-85270-334-6.
- ↑ Вечный двигатель // Вешин — Газли. — М. : Советская энциклопедия, 1971. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 5).
- Princeton University Press, 2002. — P. 167. — ISBN 978-1400823116.
- ↑ Roy, Bimalendu Narayan. Fundamentals of Classical and Statistical Thermodynamics (англ.). — John Wiley & Sons, 2002. — P. 58. — ISBN 978-0470843130.
- ↑ Definition of perpetual motion (англ.). Oxforddictionaries.com (22 ноября 2012). Дата обращения: 27 ноября 2012. Архивировано 16 июня 2020 года.
- ↑ Sébastien Point, Free energy: when the web is freewheeling, Skeptikal Inquirer, January February 2018
- Рипол Классик, 1977. — ISBN 9785458513012.
- ↑ 1 2 3 4 5 6 7 8 Каку, Митио. Вечный двигатель // Физика невозможного. — М.: Альпина нон-фикшн, 2016. — С. 349—367. — 456 с. — ISBN 978-5-91671-496-8.
- ↑ 1 2 Стефанова А. Суета сует, или краткая летопись изысканий вечного движения . Архивировано 30 мая 2019 года. // Мир измерений. 2013. № 6. С. 62-64.
- ↑ Вечный двигатель. Наиболее ранние сведения о вечных двигателях . Дата обращения: 12 февраля 2007. Архивировано из оригинала 15 августа 2015 года.
- ↑ Académie des sciences (France) Auteur du texte. Histoire de l'Académie royale des sciences … avec les mémoires de mathématique & de physique… tirez des registres de cette Académie (фр.). Gallica (1775). Дата обращения: 31 мая 2021. Архивировано 3 июня 2021 года.
- ↑ В ряде авторитетных источников (например: Боголюбов А.Н. Механика в истории человечества. — М.: Наука, 1978. — С. 78. — 152 с. — (История науки и техники).,Гельфер Я.М. Законы сохранения. — М.: Наука, 1967. — С. 48. — 264 с.) ошибочно указывается 1755 год.
- ↑ «Вечный двигатель» . Архивировано 26 апреля 2018 года. PrimeInfo
- Ю. С. Осипов ; 2004—2017, т. 5). — ISBN 5-85270-334-6.
- ↑ 1 2 Бродянский В.М. Вечный двигатель: прежде и теперь. — М., 2001. — С. 225.
- ↑ Перельман, 1972, с. 104—105.
- ↑ 1 2 3 4 Гулиа Н. В. Удивительная физика. — М., ЭНАС-КНИГА, 2014. — ISBN 978-5-91921-236-2. — с. 270—274
- ↑ 1 2 Перельман, 1972, с. 114—116.
- ↑ Я. И. Перельман Занимательная физика. Книга 2. Архивировано 3 апреля 2019 года.
- ↑ Пресняков А. Г. Авторское свидетельство СССР от 28.02.1978 г. Магнитно-тепловой двигатель . Архивировано 27 июля 2019 года.
- ↑ Алиев Ш. М., Каммилов И. К., Алиев М. Ш. Преобразователь солнечной энергии в механическую на основе магнитно-теплового двигателя . Архивировано 27 июля 2019 года. // ДАН РФ 2009 № 3
- ↑ Александров Н. Е. и др., ч. 2, 2012, с. 108.
Литература
![]() | Раздел литературы нуждается в здесь . (23 сентября 2009) |
- Александров Н. Е., Богданов А. И., Костин К. И. и др. Основы теории тепловых процессов и машин. Часть II / Под ред. Н. И. Прокопенко. — 4-е изд. (электронное). — М.: «Бином. Лаборатория знаний», 2012. — 572 с. — ISBN 978-5-9963-0834-7.
- Бродянский В. М. Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии . — М.: «Энергоатомиздат», 1989. — 256 с. — (Научно-популярная библиотека школьника). — ISBN 5-283-00058-3.
- Вознесенский Н. Н. О машинах вечного движения. М., 1926.
- Ихак-Рубинер Фрида Вечный двигатель / Фрида Ихак-Рубинер. - М. : Гос. изд-во, [1925]. - 189, [2] с., 38 ил., черт.; 18 см. - (Популярно-научная библиотека).
- Кирпичёв В. Л. Беседы по механике. М.: ГИТЛ, 1951.
- Лермантов В. В. Вечное движение // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Мах Э. Принцип сохранения работы: История и корень его. СПб., 1909.
- Михал С. Вечный двигатель вчера и сегодня / Пер. с чеш. И. Е. Зино; Предисл. А. Т. Григорьяна. — М.: «Мир», 1984. — 256 с. — («В мире науки и техники»). — 100 000 экз.
- Знание, 1980.
- Перельман Я. И. Занимательная физика. Кн. 1 и 2. М.: Наука, 1979.
- Петрунин Ю. Ю. Почему идея вечного двигателя не существовала в античности? . Архивировано из оригинала 15 мая 2009 года. // Петрунин Ю. Ю. Призрак Царьграда: неразрешимые задачи в русской и европейской культуре. — М.: КДУ, 2006, с. 75-82.
- Савельев И. В. Курс общей физики в 3-х томах. Том 1. Механика. Молекулярная физика. — 12-е изд., стереотип. — СПб.—М.—Краснодар: Лань, 2016. — 432 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-0630-2.
- Вечный двигатель // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- Я. И. Перельман. Занимательная физика. Книга 1. — М.: «Наука», 1972. — 215 с.
Ссылки
- Примеры гипотетических вечных двигателей
- Вечный двигатель. Патенты и адреса
- Техника — молодёжи 21.05.2009 Виктор Петров Вечные двигатели прежде и теперь . Архивировано из оригинала 27 февраля 2018 года.