Модель Рамсея — Касса — Купманса


Модель Рамсея — Касса — Купманса (модель Рамсея, неоклассическая модель экономического роста, англ. Ramsey—Cass—Koopmans model) — неоклассическая модель экзогенного экономического роста в условиях совершенной конкуренции. Внесла вклад в понимание того, каким образом решения индивидов формируют норму сбережений в экономике. Оптимальная динамика потребления из модели (правило Кейнса — Рамсея) оказалась удачной заменой экзогенной норме сбережений и затем применялась и в более поздних моделях экономического роста. Вместе с тем, модель не даёт удовлетворительного объяснения межстрановым различиям в уровне дохода на душу населения. Разработана одновременно и независимо друг от друга Тьяллингом Купмансом и Дэвидом Кассом[англ.] с использованием идей Фрэнка Рамсея в 1963 году.
История создания
В первых моделях экономического роста (
Работы Дэвида Касса и Тьяллинга Купманса фактически излагают одинаковую модель (за исключением условия
Описание модели
Базовые предпосылки модели
В модели рассматривается
Доходы индивида состоят из
- ,
- где — в закрытой экономике весь капитал принадлежит резидентам, а величина активов индивида совпадает с запасом капитала на одного работающего .
Предпосылка о закрытой экономике означает, что произведенный продукт тратится на инвестиции и потребление, экспорт и импорт отсутствуют, сбережения равны инвестициям: , [14].
Производственная функция удовлетворяет неоклассическим предпосылкам[15][16]:
1) технологический прогресс увеличивает производительность труда (нейтрален по Харроду): .
2) в производственной функции используются труд и капитал , она обладает постоянной отдачей от масштаба: .
3) предельная производительность факторов положительная и убывающая: .
4) производственная функция удовлетворяет условиям Инады, а именно, если запас одного из факторов бесконечно мал, то его предельная производительность бесконечно велика, если же запас одного из факторов бесконечно велик, то его предельная производительность бесконечно мала: .
5) для производства необходим каждый фактор: .
Население , равное в модели совокупным трудовым ресурсам, растет с постоянным темпом [17]: [17].
Индивид предлагает одну единицу труда (предложение труда неэластично) и получает натуральную заработную плату (в единицах товара). Функция полезности бесконечно живущего индивида-потребителя имеет вид[17][2]:
- ,
- где — потребление на душу населения в момент времени ; — коэффициент межвременного предпочтения потребителя,.
Функция полезности является сепарабельной, то есть потребление прошлых и будущих периодов не влияют на текущую полезность, влияет только потребление текущего периода. Она удовлетворяет условиям и условиям Инады (при потреблении, стремящемся к нулю, предельная полезность стремится к бесконечности, при потреблении, стремящемся к бесконечности, предельная полезность стремится к нулю)[18][4]: .
Для поиска решения модели используются удельные показатели: выпуск на единицу труда , выпуск на единицу эффективного труда , запас капитала на единицу эффективного труда , потребление на единицу эффективного труда [19].
Задача потребителя
Доходы индивида расходуются либо на потребление, либо на увеличение активов (сбережений). Население растет темпом , поэтому активы на одного человека сокращаются с этим же темпом, то есть скорость изменения активов в каждый момент времени уменьшается на . Таким образом, производная активов по времени , выступающая в качестве бюджетного ограничения индивида, имеет вид[20]:
- .
Задача потребителя заключается в максимизации полезности при бюджетном ограничении и при ограничении на отсутствие схемы Понци. Поскольку бюджетное ограничение представлено как производная по времени, то задача потребителя представлена в виде задачи
.Функция Гамильтона выглядит следующим образом:
- при условии:
- .
Условие максимума первого порядка: .
Фазовая координата (сопряжённое уравнение): , где — производная по времени.
Условие трансверсальности (при невыполнении которого найденное решение может оказаться не максимумом, а седловой точкой): , где представляют собой теневые цены[англ.] активов[21] (теневые цены учитывают внешние эффекты в стоимости товаров, если фирмы и потребители принимают решения в соответствии со структурой цен, пропорциональной теневой, то в экономике достигается оптимальное по Парето состояние). В данном случае условие трансверсальности совпадает с ограничением на отсутствие схемы Понци[13][23].
Искомое решение имеет вид[24][25]:
- ,
- где — производная потребления по времени, — эластичность предельной полезности по потреблению.
Поскольку для дальнейшего анализа необходимо, чтобы эта величина была постоянной, вводится дополнительная предпосылка о виде функции полезности: в качестве неё используют функцию с постоянной эластичностью замещения[26]:
- .
В таком случае, , а значит[25]:
- ,
- где — производная потребления на душу населения по времени.
Найденное решение называется .
Задача фирмы
Производственную функцию можно записать через удельные показатели: . Задача фирмы состоит в максимизации прибыли [28]:
Поскольку фирмы функционируют в условиях совершенной конкуренции, то предельные производительности факторов производства равны их ценам[15][28]:
- ,
- .
Общее экономическое равновесие


Учитывая, что , подставив полученные из решения задачи фирмы значения и в уравнение динамики активов, получим[29]:
- .
Поскольку [30], решение задачи потребителя можно записать в следующем виде[31]:
- .
В стационарном состоянии . Откуда, получаем, что . В итоге, устойчивое состояние описывается системой уравнений[30][29]:
- где — потребление, а — капиталовооружённость на единицу эффективного труда в устойчивом состоянии.
По условию трансверсальности[29]:
- ,
откуда следует что . С учетом уравнения для , это условие означает, что для существование устойчивого состояния необходимо, чтобы . Также это означает, что в модели Рамсея — Касса — Купманса накопление капитала ниже, чем уровень максимизирующий потребление (модифицированное Золотое правило: , где — капиталовооружённость на единицу эффективного труда, соответствующая Золотому правилу), а значит, невозможна динамическая неэффективность в виде избыточного накопления капитала[32][33].
Достижение равновесия в модели можно проиллюстрировать при помощи фазовой плоскости. Линии и делят диаграмму на четыре квадранта. Слева от линии траектория капиталовооружённости идет вверх, а справа от линии — вниз. Выше линии траектория капиталовооружённости идет влево, а ниже линии — вправо. Таким образом, в квадранте I траектория идет влево и вверх, в квадранте II — влево и вниз, в квадранте III — вправо и вниз, в квадранте IV — вправо и вверх. В итоге, в модели существует только одна траектория, ведущая к равновесию — зеленая линия на иллюстрации. На этой линии расположено множество точек и , из которых система приходит в устойчивое состояние. Варианты траектории из других точек показаны красным, в этом случае в конечном итоге становится равной нулю либо капиталовооружённость (), либо потребление ()[34]. Поскольку оптимальная траектория капиталовооружённости в модели имеет вид седла, её также называют «седловой путь»[35].
Динамика нормы сбережений по мере приближения к равновесному состоянию также показана на иллюстрации.
В рассматриваемой модели равновесия для централизованной и децентрализованной экономики одинаковы[36].
Конвергенция
Модель предполагает наличие условной конвергенции, то есть, что страны с малым уровнем капиталовооружённости будут расти более высокими темпами, чем страны с большим уровнем капиталовооружённости , при условии, что устойчивое состояние у них одинаково. Скорость приближения к устойчивому состоянию можно оценить при помощи линейной аппроксимации посредством разложения в ряд Тейлора дифференциальных уравнений для и [37]:
Из условий устойчивости следует, что угловой коэффициент у второго слагаемого () во втором уравнении равен -1, а в первом — 0. Используя уравнения устойчивого состояния, можно записать линейные аппроксимации в следующем виде[38]:
Решение этой системы уравнений имеет вид[38]:
- где — коэффициент, характеризующий скорость конвергенции.
Расчеты скорости конвергенции по модели Рамсея — Касса — Купманса с использованием параметров, близких к параметрам экономики США, предсказывают высокую скорость конвергенции, не наблюдаемую на реальных данных[39].
Фискальная политика в модели

Модель позволяет оценить влияние фискальной политики на равновесие. Предполагается, что величина налогов предполагается равной величине государственных расходов, которые не влияют на полезность индивидов и будущий выпуск. В этом случае уравнение для примет следующий вид[40]:
- ,
- где — величина государственных расходов на единицу труда с постоянной эффективностью.
В результате фискальной политики кривая сдвигается вниз на величину и равновесие в модели устанавливается на прежнем уровне капиталовооружённости, но потребление снизится на величину . Таким образом, в модели государственные расходы вытесняют потребление[41].
Влияние фискальной политики на равновесие проиллюстрировано при помощи фазовой плоскости.
Преимущества, недостатки и дальнейшее развитие модели
Наиболее важный вклад модели Рамсея — Касса — Купманса состоит в том, что она раскрыла механизм формирования нормы сбережений через решения потребителей, а также стала основой для дальнейшего анализа того, как решения индивидов формируют накопления физического и человеческого капитала, и как следствие, научно-технический прогресс. Это стало большим шагом вперёд по сравнению с моделью Солоу, и во многом по этой причине модель стала отправной точкой для многих исследователей, которые использовали её концептуальный и математический аппарат для построения своих моделей[42]. Неоклассическая модель экономического роста рассматривается во всех современных учебниках макроэкономики и теории экономического роста[43].
Оптимальная динамика потребления из модели (правило Кейнса — Рамсея) оказалась удачной заменой экзогенной норме сбережений и затем применялась и в более поздних моделях экономического роста, где в качестве экономического агента выступает бесконечно живущий индивид (или домохозяйство): в
Включение в модель внешних эффектов от уровня физического и человеческого капитала (для чего в некоторых случаях пришлось отказаться от 2, 3 и 4 предпосылки неоклассической производственной функции) привело к развитию АК-моделей[44].
Мигель Сидрауски добавил в модель денежную массу, чтобы проанализировать влияние денежной эмиссии и инфляции на реальные показатели в экономике. В итоге в расширенной модели равновесие получилось таким же, как и в модели без денежной массы, что означает отсутствие влияния предложения денег на реальные показатели. Полученное свойство было названо нейтральностью денег[45].
В качестве недостатка модели некоторые исследователи указывали бесконечно живущего индивида (или домохозяйство) в качестве вечного потребителя[46]. По мере взросления характер потребительского поведения меняется. Если в молодом возрасте индивид работает и делает сбережения, то в старости он эти сбережения тратит[47]. Этот факт был отражен в модели пересекающихся поколений, которая полностью отрицает альтруистические связи между поколениями[48][46].
Вместе с тем, модель не внесла существенного вклада в понимание причин межстрановых различий в уровне
В модели невозможна динамическая неэффективность, решения для централизованной и децентрализованной экономики одинаковы, а значит невозможно неоптимальное по Парето равновесие в экономике, потому модель не показывает, как неправильная экономическая политика или ограничивающие социальные институты могут замедлить развитие страны. Другими словами, модель не объясняет причин, по которым бедные страны остаются бедными и не могут догнать богатые[43].
Примечания
- ↑ 1 2 Ramsey F., 1928.
- ↑ 1 2 Koopmans, 1963.
- ↑ 1 2 3 Koopmans T., 1965.
- ↑ 1 2 3 4 Cass, 1965.
- ↑ 1 2 3 4 Аджемоглу, 2018, с. 437.
- ↑ 1 2 3 Туманова, Шагас, 2004, с. 228.
- ↑ Барро, Сала-и-Мартин, 2010, с. 115.
- ↑ Ромер Д., 2014, с. 75.
- ↑ Palgrave (Newbery), 2018, с. 11172—11178.
- ↑ Spear, Young, 2014.
- ↑ Аджемоглу, 2018, с. 437—445.
- ↑ Туманова, Шагас, 2004, с. 228—229.
- ↑ 1 2 Аджемоглу, 2018, с. 445.
- ↑ Туманова, Шагас, 2004, с. 187.
- ↑ 1 2 Туманова, Шагас, 2004, с. 233.
- ↑ Аджемоглу, 2018, с. 36—47.
- ↑ 1 2 3 Аджемоглу, 2018, с. 438.
- ↑ Туманова, Шагас, 2004, с. 229.
- ↑ Аджемоглу, 2018, с. 91.
- ↑ Аджемоглу, 2018, с. 440.
- ↑ 1 2 Туманова, Шагас, 2004, с. 230.
- ↑ Аджемоглу, 2018, с. 447.
- ↑ Palgrave (Kamihigashi), 2018, с. 13860.
- ↑ Туманова, Шагас, 2004, с. 231.
- ↑ 1 2 Аджемоглу, 2018, с. 449.
- ↑ Туманова, Шагас, 2004, с. 232.
- ↑ Туманова, Шагас, 2004, с. 230—231.
- ↑ 1 2 Аджемоглу, 2018, с. 439.
- ↑ 1 2 3 Аджемоглу, 2018, с. 472.
- ↑ 1 2 Туманова, Шагас, 2004, с. 237.
- ↑ Аджемоглу, 2018, с. 471.
- ↑ Туманова, Шагас, 2004, с. 235.
- ↑ Аджемоглу, 2018, с. 473.
- ↑ Аджемоглу, 2018, с. 461.
- ↑ Туманова, Шагас, 2004, с. 241.
- ↑ Туманова, Шагас, 2004, с. 236—237.
- ↑ Туманова, Шагас, 2004, с. 245—246.
- ↑ 1 2 Туманова, Шагас, 2004, с. 246.
- ↑ Туманова, Шагас, 2004, с. 247.
- ↑ Туманова, Шагас, 2004, с. 248.
- ↑ Туманова, Шагас, 2004, с. 248—249.
- ↑ 1 2 Аджемоглу, 2018, с. 484.
- ↑ 1 2 3 Аджемоглу, 2018, с. 485.
- ↑ Аджемоглу, 2018, с. 597—598.
- ↑ Sidrauski, 1967.
- ↑ 1 2 Аджемоглу, 2018, с. 501.
- ↑ Туманова, Шагас, 2004, с. 252.
- ↑ Туманова, Шагас, 2004, с. 253.
- ↑ Hall, Jones, 1996.
- ↑ De Long, 1988.
- ↑ Romer P. M., 1989.
- ↑ Аджемоглу, 2018, с. 698.
Литература
- Издательский дом «Дело» РАНХиГС, 2018. — 928 с. — ISBN 978-5-7749-1262-9.
- Сала-и-Мартин Х. Экономический рост / Пер. с англ.. — М.: Бином. Лаборатория знаний, 2010. — 824 с. — ISBN 978-5-94774-790-4.
- Издательский дом «Дело» РАНХиГС, 2014. — 680 с. — ISBN 978-5-7749-0829-5.
- Ромер Д. Высшая макроэкономика = Advanced Macroeconomics. — М.: Изд. дом ВШЭ, 2014. — 855 с. — ISBN 978-5-7568-0406-2.
- Туманова Е. А., Шагас Н. Л. Макроэкономика. Элементы продвинутого подхода. — М.: ИНФРА-М, 2004. — 400 с. — ISBN 5-1600-1864-6.
- Cass D.[англ.]. Optimum Growth in an Aggregative Model of Capital Accumulation // The Review of Economic Studies[англ.]. — 1965. — Vol. 32, № 3. — P. 233—240.
- De Long J. B. Productivity Growth, Convergence, and Welfare: Comment // The American Economic Review[англ.]. — 1988. — Vol. 78, № 5. — P. 1138—1154. — .
- doi:10.3386/w5812.
- Kamihigashi T. Transversality Conditions and Dinamic Economic Behaviour // The New Palgrave Dictionary of Economics / Macmillan Publishers Ltd. — London: Palgrave Macmillan UK, 2018. — P. 13858—13862. — ISBN 978-1-349-95188-8.
- Koopmans T.C. On the concept of optimal economic growth // Cowles Foundation for Research in Economics, Yale University, Discussion Paper. — 1963. — № 163.
- Koopmans T.C. On the concept of optimal economic growth // Pontificiae Academiae Scientiarum Scripta varia //The Econometric Approach to Development Planning - Part I. — 1965. — Vol. 28. — P. 225—300.
- The New Palgrave Dictionary of Economics / Macmillan Publishers Ltd. — London: Palgrave Macmillan UK, 2018. — P. 11172—11178. — ISBN 978-1-349-95188-8.
- Ramsey F. P. A mathematical theory of saving // The Economic Journal[англ.]. — 1928. — Vol. 38, № 152. — P. 543—559.
- doi:10.3386/w3173.
- Sidrauski M. Rational Choice and Patterns of Growth in a Monetary Economy (англ.) // The American Economic Review[англ.] : journal. — 1967. — Vol. 57, no. 2. — P. 534—544.
- Spear S. E., Young W. Optimum savings and optimal growth: Ramsey — Mavlinvaud — Koopmans nexus // .
Эта статья входит в число хороших статей русскоязычного раздела Википедии. |