Нуклеофил

Материал из Википедии — свободной энциклопедии

Нуклеофил в химии (лат. nucleus «ядро», др.-греч. φιλέω «любить») — реагент, образующий химическую связь с партнером по реакции (электрофилом) по донорно-акцепторному механизму, предоставляя электронную пару, образующую новую связь[1]. Вследствие того, что нуклеофилы отдают электроны, они по определению являются основаниями Льюиса. В роли нуклеофилов теоретически могут выступать все ионы и нейтральные молекулы с неподеленной электронной парой.

Нуклеофил — электроноизбыточный химический реагент, способный взаимодействовать с электронодефицитными соединениями (электрофилами). Примерами нуклеофилов являются анионы (Cl, Br, I) и соединения с неподелённой электронной парой (NH3, H2O).

В ходе реакций

основания (с бóльшим значением pKa сопряженной кислоты) являются лучшими нуклеофилами. В пределах одной группы на нуклеофильность большее влияние оказывает поляризуемость — лёгкость, с которой деформируется электронное облако атома или молекулы. К примеру, в водных растворах иодид-ион I более нуклеофилен, чем фторид F[2]
.

Амбидентные нуклеофилы имеют два и более реакционных центра. К примеру,

галогеноалканов
с SCN часто приводят к образованию смеси RSCN (алкилтиоцианата) и RNCS (алкилизотиоцианата).

Термины «нуклеофил» и «электрофил» были введены в 1929 Кристофером Ингольдом[3], заменив предложенные ранее (в 1925) Лэпворсом «катионоид» и «анионоид»[4].

Примеры

В показанном ниже примере

бимолекулярного нуклеофильного замещения (SN2) атом кислорода гидроксид-иона донирует пару электронов на связывание с атомом углерода в молекуле бромэтана. Связь между атомами углерода и брома разрывается по гетеролитическому механизму: бром принимает оба электрона этой связи и уходит в виде иона Br. В данной реакции OH является нуклеофилом, а CH3CH2Br — электрофилом
.

Замещение брома на гидроксид в молекуле бромэтана

В данной реакции атака нуклеофила происходит со стороны, противоположной уходящей группе. Вследствие этого SN2-процессы сопровождаются обращением (инверсией) конфигурации.

Классификация

Нуклеофилы можно классифицировать несколькими способами: по типу орбитали, с которой донируются электроны, и по природе атома, который образует связь.

По типу реагирующей орбитали

В зависимости от природы орбитали, на которой располагались электроны, пошедшие на образование связи с электрофилом, можно выделить:

По атому, образующему связь

Углеродные нуклеофилы

Нуклеофилами с реакционным центром на атоме углерода являются:

  • алкил- и арилметаллогалиды (например, CH3MgBr, PhMgCl и т. д.) в реакциях Гриньяра, Реформатского, Барбье и др.
  • органолитиевые реагенты (PhLi) и анионы терминальных алкинов (HC≡CLi+);
  • конденсации Кляйзена
    .
Резонансные структуры енолят-иона
  • другие частицы с полным или частичным отрицательным зарядом на атоме углерода (например, CH2−NO2).

Азотные нуклеофилы

Примерами азотных нуклеофилов являются аммиак (NH3), органические амины (RNH2, R2NH, R3N) и азиды (R−N3).

Взаимодействие триэтиламина с первичным алкилиодидом

Кислородные нуклеофилы

Типичными кислородными нуклеофилами являются

гетероцикла
с одним атомом кислорода:

Образование эпоксида по реакции Вильямсона

Серные нуклеофилы

Серосодержащие соединения обычно являются хорошими нуклеофилами, так как атом

тиолы
(RSH) и тиоляты (RS).

Тиолят-ион в качестве нуклеофила

Шкалы нуклеофильности

Известно несколько способов количественного описания реакционной способности нуклеофилов. Приведенные ниже методы основаны на изучении экспериментальных данных о скорости определенных реакций с участием большого количества нуклеофилов и электрофилов. Как правило, реагенты с выраженным альфа-эффектом не включаются в эти корреляции.

Уравнение Свена — Скотта

Уравнение Свена — Скотта было выведено в 1953 году и является первой попыткой количественно описать реакционную способность нуклеофилов в реакциях SN2[5][6]:

В этом уравнении k —

CH3Br или CH3I
S принимается равным 1), n — параметр нуклеофильности (для воды n = 0, табл. 1, 2).

Таким образом, для реакций

CH3I + H2O → CH3OH + HI
CH3I + Nuc−H → CH3−Nuc + HI

уравнение Свена — Скотта можно записать как

Табл. 1. Параметры нуклеофильности n для стандартного нуклеофила
CH3Br и стандартного растворителя H2O при 25 °C[7]
Нуклеофил Значение n Нуклеофил Значение n Нуклеофил Значение n
 SO32− 5,16  CN 5,10  I 5,04
 SCN 4,77  HO 4,20  N3 4,00
 Br 3,89  HCO3 3,80  Cl 3,04
 CH3COO 2,72  SO42− 2,50  F 2,00
 NO3 1,03  CH3OH 0,70  H2O 0,00
Табл. 2. Параметры нуклеофильности n для стандартного нуклеофила CH3I и стандартного растворителя MeOH при 25 °C[8]
Нуклеофил Значение n Нуклеофил Значение n Нуклеофил Значение n
 F 2,7  Cl 4,37  Br 5,79
 I 7,42  N3 5,78  NC 6,70
 CH3OH ~0,00  H2O 0,00  CH3CO2 4,3
 PhO 5,75  CH3O 6,29  Пиридин 5,23
 Анилин 5,70  Триэтиламин 6,66  PhSH 5,7

Уравнение Ричи

Уравнение Ричи было выведено в 1972 году [9] и выражается следующим образом[10]:

,

где  — константа скорости реакции стандартного катиона (обычно соли диазония) с со стандартным нуклеофилом (водой) в водной среде,  — константа скорости реакции с заданным нуклеофилом,  — параметр, зависящий от нуклеофила (табл. 3):

Реакции нуклеофилов с катионами диазония
Табл. 3. Параметры нуклеофильности N+ при 25 °C[9]
Нуклеофил
(растворитель)
Значение N+ Нуклеофил
(растворитель)
Значение N+
 H2O (H2O) 0,0  MeOH (MeOH) 0,5
 CN (H2O) 3,8  CN (MeOH) 5,9
 HO (H2O) 4,5  MeO (MeOH) 7,5
 N3 (H2O) 5,4  N3 (MeOH) 8,5
 PhS (
ДМСО
)
13,1  PhS (MeOH) 10,7

Важной особенностью уравнения Ричи является отсутствие параметра чувствительности субстрата (σ в уравнении Свена-Скотта). Таким образом, принимается, что относительная реакционная способность двух нуклеофилов определяется только значением N+ и не зависит от партнера по реакции. Это находится в резком противоречии с т. н. принципом взаимозависимости реакционной способности и селективности[11]. Из-за этого уравнение Ричи иногда называется «соотношение постоянной селективности»[12]. Явная упрощенность вызвала ряд публикаций о пределах его применимости[12][13].

Уравнение Майра — Патца

Диарилметильный катион

В

1994 г. Г. Майр и М. Патц, на основании исследования реакционной способности диарилметильных катионов и других соединений, предложили уравнение, описывающее реакционную способность достаточно большого количества нуклеофилов и электрофилов[14]
:

В этом уравнении

константа скорости
реакции второго порядка k, измеренная при 20 °C, связывается с параметром электрофильности E (для бис(п-метоксифенил)метильного катиона E = 0), параметром нуклеофильности N и фактором чувствительности s (для реакций 2-метил-1-пентена s = 1). Для реакций незаряженных нуклеофилов константа скорости слабо зависит от растворителя и последний обычно не указывается.

Диарилметильные катионы были выбраны в качестве стандартных электрофилов потому, что их активностью можно управлять подбором заместителя R в пара-положении. Таким образом, оказалось возможным измерить реакционную способность очень разных нуклеофилов. Для протестированных соединений параметр N изменяется в диапазоне от −4,47 до 28,95 (Табл. 4)[15].

Некоторые нуклеофилы, для которых измерены параметры нуклеофильности N
Табл. 4. Параметры N и s для некоторых нуклеофилов[15]
Нуклеофил N (s) Нуклеофил N (s)
 1 −4,47 (1,32)  2 −0,41 (1,12)
 3 +0,96 (1)  4 −0,13 (1,21)
 5 +3,61 (1,11)  6 +7,48 (0,89)
 7 +13,36 (0,81)  PhC(CN)CH3[16] 28,95 (0,58)

Параметр элекрофильности E для некоторых карбокатионов можно грубо оценить по следующему уравнению[14]:

,

где kw — константа псевдопервого порядка для реакции карбокатиона с водой при 20 °C.

Нуклеофильность N в уравнении Майра — Патца связана с параметром Ричи N+ следующим соотношением:

Объединенное уравнение

В попытке объединить все вышеописанные уравнения Майр с сотрудниками предложили следующее выражение[17]:

,

где sE — параметр чувствительности электрофила; sN — параметр чувствительности нуклеофила; N и E имеют такое же значение, как и в уравнении Майра — Патца.

С помощью соответствующих подстановок данное выражение можно превратить в любое описанное ранее уравнение:

  • при sE = 1 (для карбокатионов) это уравнение эквивалентно оригинальному уравнению Майра — Патца;
  • при sN = 0.6 (для большинства n-нуклеофилов):
,
что эквивалентно уравнению Свена-Скотта:
;
  • при sE = 1 и sN = 0.6 получим:
что эквивалентно уравнению Ричи в немного измененном виде:

См. также

Примечания

  1. ИЮПАК .pdf Архивная копия от 26 сентября 2009 на Wayback Machine
  2. 1 2 Кери Ф., Сандберг Р. Углубленный курс органической химии: Пер. с англ. = Advanced Organic Chemistry / Под ред. В. М. Потапова. — М.: Химия, 1981. — Т. 1. Структура и механизмы. — 520 с.
  3. Ingold, C. K.  // Recl. Trav. Chim. Pays-Bas. — 1929.
  4. Lapworth, A.  // Nature. — 1925. — Vol. 115. — P. 625.
  5. C. Gardner Swain, Carleton B. Scott. Quantitative Correlation of Relative Rates. Comparison of Hydroxide Ion with Other Nucleophilic Reagents toward Alkyl Halides, Esters, Epoxides and Acyl Halides (англ.) // J. Am. Chem. Soc.. — 1953. — Vol. 75. — P. 141-147. Архивировано 5 августа 2020 года.
  6. Swain–Scott equation (англ.). IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (7 сентября 2009). Дата обращения: 22 августа 2010. Архивировано 7 мая 2012 года.
  7. Химическая энциклопедия./ Нуклеофильные реакции. // Главный редактор И. Л. Кнунянц. — М.: «Советская энциклопедия», 1988 год. — Т. 3.
  8. R. G. Pearson, H. Sobel, J. Songstad. Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(py)2Cl2(англ.) // J. Am. Chem. Soc.. — 1968. — Vol. 90. — P. 319-326.
  9. 22 июня 2023 года.
  10. doi:10.1351/goldbook.R05402. Дата обращения: 22 августа 2010. Архивировано
    7 мая 2012 года.
  11. «Чем более активен реагент, тем он менее селективен.»
  12. .
  13. .
  14. 23 декабря 2010 года.
  15. 1 2 H. Mayr et al. Mayr's Database of Reactivity Parameters (англ.). Дата обращения: 2 сентября 2010. Архивировано 7 мая 2012 года.
  16. ДМСО
    .
  17. 19 ноября 2015 года.