W- и Z-бозоны

Материал из Википедии — свободной энциклопедии
W±- и Z-бозоны (W±, Z0)
Состав фундаментальная частица
Семья бозон
Группа
калибровочный бозон
Участвует во взаимодействиях
гравитационное[1],
слабое,
для W-бозонов также электромагнитное
Античастица
W+ для W-
Z0 сама себе
Кол-во типов 3
Масса

W:
80,385±0,015 

ГэВ/c2 (2012)[2]
80,433±0.009 
ГэВ/c2 (2022)[3]


Z:
91,1876±0,0021 
Время жизни ~3⋅10−25 с
(ширины распада:
W-бозон 2,141 ГэВ,
Z-бозон 2,4952 ГэВ)
Теоретически обоснована
1968
)
Обнаружена совместные эксперименты
1983
Квантовые числа
Электрический заряд W: ±1 
e

Z: 0 e
Цветовой заряд 0
Барионное число 0
Спин 1
ħ
Кол-во спиновых состояний 3
Логотип Викисклада Медиафайлы на Викискладе

W- и Z-бозо́ны —

1983) считается одним из главнейших успехов Стандартной модели физики элементарных частиц
.

W-частица названа по первой букве названия взаимодействия — слабое (Weak) взаимодействие. Z-частица получила такое имя, поскольку Z-бозон имеет нулевой (Zero) электрический заряд.

Основные свойства

МезонМезонБарионНуклонКваркЛептонЭлектронАдронАтомМолекулаФотонW- и Z-бозоныГлюонГравитонЭлектромагнитное взаимодействиеСлабое взаимодействиеСильное взаимодействиеГравитацияКвантовая электродинамикаКвантовая хромодинамикаКвантовая гравитацияЭлектрослабое взаимодействиеТеория великого объединенияТеория всегоЭлементарная частицаВеществоБозон Хиггса
Краткий обзор различных семейств
составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны
. (Термины — гиперссылки на статьи Википедии)

Существует два типа W-бозонов — с электрическим зарядом +1 и −1 (в единицах элементарного заряда); W+ является

античастицей
для W. Z-бозон (или Z0) электрически нейтрален и является античастицей сам для себя. Все три частицы очень короткоживущие, со средним временем жизни около 3⋅10−25 секунд.

Эти

бозоны — тяжеловесы среди элементарных частиц. С массой в 80,4 и 91,2 ГэВ/c2, соответственно, W±- и Z0-частицы почти в 100 раз тяжелее протона и близки к массе атомов рубидия и технеция соответственно. Из-за очень высокой массы эти бозоны распадаются крайне быстро после своего образования, что объясняет малый радиус действия слабого взаимодействия. Электромагнитные силы, напротив, имеют бесконечный радиус действия, потому что их бозон-переносчик (фотон
) не имеет массы, из-за чего не распадается.

Все три типа бозонов имеют спин 1.

Испускание W+- или W-бозона может либо повысить, либо понизить электрический заряд испускающей частицы на 1 единицу и изменить спин на 1 единицу. В то же время W-бозон может менять поколение частицы, например, превращать s-кварк в u-кварк. Z0-бозон не может менять ни электрический заряд, ни любой другой заряд (странность, очарование и т. д.) — только спин и импульс, так что он никогда не меняет поколение или аромат частицы, испускающей его (см. нейтральный ток).

Слабое взаимодействие

посредством тяжелого W-бозона

W- и Z-бозоны — это частицы-переносчики слабого взаимодействия, как фотон является частицей-переносчиком для электромагнитного взаимодействия. W-бозон играет важную роль в ядерном бета-распаде. Рассмотрим для примера бета-распад изотопа кобальта Co60, важный процесс, происходящий при взрыве сверхновых:

В этой реакции участвует не всё ядро Co60, а только один из его 33

антинейтрино
:

Опять же сам нейтрон является не фундаментальной, а составной частицей, состоящей из u-кварка и двух d-кварков (udd). Так что на самом деле в бета-распаде участвует один из d-кварков, который превращается в u-кварк, чтобы сформировать протон (uud). Итак, на самом фундаментальном уровне слабое взаимодействие просто меняет аромат одного кварка:

за которым немедленно следует распад самого W:

Все квантовые числа Z-бозона равны нулю, поскольку он является античастицей сам для себя (т. н.

детекторы, что возможны только в нескольких лабораториях физики высоких энергий
в мире.

Предсказание W- и Z-бозонов

Диаграмма Фейнмана, показывающая обмен парой W-бозонов. Это основная стадия процесса осцилляции нейтральных каонов
.

Вслед за впечатляющими успехами

теория электрослабого взаимодействия
предсказала не только W-бозон, необходимый для объяснения бета-распада, но также новый Z-бозон, который до этого никогда не наблюдался.

Тот факт, что W- и Z-бозоны имеют массу, в то время как фотон массы не имеет, был главным препятствием для развития теории электрослабого взаимодействия. Эти частицы точно описываются калибровочной симметрией SU(2), но бозоны в

1960-х. Оно предсказывает существование ещё одной новой частицы — бозона Хиггса
.

Сочетание калибровочной теории SU(2) слабого взаимодействия, электромагнитного взаимодействия и механизма Хиггса известно как модель Глэшоу — Вайнберга — Салама. Сейчас это один из столпов Стандартной модели физики элементарных частиц.

Экспериментальное открытие W- и Z-бозонов

Пузырьковая камера «Гаргамель», выставленная в ЦЕРН

Открытие W- и Z-бозонов — одна из самых успешных страниц истории ЦЕРНа. Сначала, в 1973 году, производились наблюдения взаимодействий нейтральных токов, предсказанных теорией электрослабого взаимодействия. В огромной пузырьковой камере «Гаргамель[англ.]», облучаемой пучком нейтрино от ускорителя, были сфотографированы треки нескольких электронов, которые внезапно начинали двигаться, казалось бы, сами по себе. Это явление было интерпретировано как взаимодействие нейтрино и электрона при помощи обмена невидимым Z-бозоном. Нейтрино также очень трудно детектировать, так что единственным наблюдаемым эффектом является импульс, полученный электроном после взаимодействия.

Открытия самих W- и Z-бозонов пришлось ждать, пока не стало возможным построить ускорители, достаточно мощные, чтобы создать их. Первой такой машиной стал

Симона ван дер Меера. Как и большинство крупных экспериментов в физике высоких энергий, они являлись совместным трудом многих людей. Ван дер Меер был руководителем группы, управляющей ускорителем (изобретатель концепции стохастического охлаждения, сделавшей возможным открытие W- и Z-бозонов). Частицы рождались в столкновении встречных пучков протонов и антипротонов. Через несколько месяцев после обнаружения W-бозона (январь 1983 года) коллаборации UA1 и UA2 открыли Z-бозон (май 1983 года). Руббиа и Ван дер Меер были награждены Нобелевской премией по физике 1984 года[6]
всего через полтора года после открытия, что было необычным шагом со стороны обычно консервативного Нобелевского фонда.

Каналы распада бозонов