Abu Kamil

Source: Wikipedia, the free encyclopedia.
Abu Kamil
أبو كامل
Bornc. 850
Diedc. 930
Other namesAl-ḥāsib al-miṣrī
Academic background
InfluencesAl-Khwarizmi
Academic work
EraIslamic Golden Age
(Middle Abbasid era)
Main interestsAlgebra, geometry
Notable worksThe Book of Algebra
Notable ideas
  • Use of irrational numbers as solutions and coefficients to equations
InfluencedAl-Karaji, Fibonacci

Abū Kāmil Shujāʿ ibn Aslam ibn Muḥammad Ibn Shujāʿ (

coefficients to equations.[2] His mathematical techniques were later adopted by Fibonacci, thus allowing Abu Kamil an important part in introducing algebra to Europe.[3]

Abu Kamil made important contributions to

Islamic mathematician
to work easily with algebraic equations with powers higher than (up to ),
He illustrated the rules of signs for expanding the multiplication .[7] He wrote all problems rhetorically, and some of his books lacked any mathematical notation beside those of integers. For example, he uses the Arabic expression "māl māl shayʾ" ("square-square-thing") for (as ).[3][8] One notable feature of his works was enumerating all the possible solutions to a given equation.[9]

The Muslim

Ibn Khaldūn classified Abū Kāmil as the second greatest algebraist chronologically after al-Khwarizmi.[10]

Life

Almost nothing is known about the life and career of Abu Kamil except that he was a successor of al-Khwarizmi, whom he never personally met.[3]

Works

Book of Algebra (Kitāb fī al-jabr wa al-muqābala)

The Algebra is perhaps Abu Kamil's most influential work, which he intended to supersede and expand upon that of

irrational numbers (in the form of a square root or fourth root) as solutions and coefficients to quadratic equations.[2]

The first chapter teaches algebra by solving problems of application to geometry, often involving an unknown variable and square roots. The second chapter deals with the

six types of problems found in Al-Khwarizmi's book,[9]
but some of which, especially those of , were now worked out directly instead of first solving for and accompanied with geometrical illustrations and proofs.
polygons. The rest of the book contains solutions for sets of indeterminate equations, problems of application in realistic situations, and problems involving unrealistic situations intended for recreational mathematics.[9]

A number of Islamic mathematicians wrote commentaries on this work, including al-Iṣṭakhrī al-Ḥāsib and ʿAli ibn Aḥmad al-ʿImrānī (d. 955-6),[12] but both commentaries are now lost.[4]

In Europe, similar material to this book is found in the writings of Fibonacci, and some sections were incorporated and improved upon in the Latin work of John of Seville, Liber mahameleth.[9] A partial translation to Latin was done in the 14th century by William of Luna, and in the 15th century the whole work also appeared in a Hebrew translation by Mordekhai Finzi.[9]

Book of Rare Things in the Art of Calculation (Kitāb al-ṭarā’if fi’l-ḥisāb)

Abu Kamil describes a number of systematic procedures for finding integral solutions for indeterminate equations.[4] It is also the earliest known Arabic work where solutions are sought to the type of indeterminate equations found in Diophantus's Arithmetica. However, Abu Kamil explains certain methods not found in any extant copy of the Arithmetica.[3] He also describes one problem for which he found 2,678 solutions.[13]

On the Pentagon and Decagon (Kitāb al-mukhammas wa’al-mu‘ashshar)

In this treatise algebraic methods are used to solve geometrical problems.[4] Abu Kamil uses the equation to calculate a numerical approximation for the side of a regular pentagon in a circle of diameter 10.[14] He also uses the golden ratio in some of his calculations.[13] Fibonacci knew about this treatise and made extensive use of it in his Practica geometriae.[4]

Book of Birds (Kitāb al-ṭair)

A small treatise teaching how to solve indeterminate linear systems with positive integral solutions.[11] The title is derived from a type of problems known in the east which involve the purchase of different species of birds. Abu Kamil wrote in the introduction:

I found myself before a problem that I solved and for which I discovered a great many solutions; looking deeper for its solutions, I obtained two thousand six hundred and seventy-six correct ones. My astonishment about that was great, but I found out that, when I recounted this discovery, those who did not know me were arrogant, shocked, and suspicious of me. I thus decided to write a book on this kind of calculations, with the purpose of facilitating its treatment and making it more accessible.[11]

According to Jacques Sesiano, Abu Kamil remained seemingly unparalleled throughout the Middle Ages in trying to find all the possible solutions to some of his problems.[9]

On Measurement and Geometry (Kitāb al-misāḥa wa al-handasa)

A manual of

cones). The first few chapters contain rules for determining the area, diagonal, perimeter, and other parameters for different types of triangles, rectangles and squares.[3]

Lost works

Some of Abu Kamil's lost works include:

Fihrist listed the following additional titles: Book of Fortune (Kitāb al-falāḥ), Book of the Key to Fortune (Kitāb miftāḥ al-falāḥ), Book of the Adequate (Kitāb al-kifāya), and Book of the Kernel (Kitāb al-ʿasīr).[5]

Legacy

The works of Abu Kamil influenced other mathematicians, like al-Karaji and Fibonacci, and as such had a lasting impact on the development of algebra.[5][16] Many of his examples and algebraic techniques were later copied by Fibonacci in his Practica geometriae and other works.[5][13] Unmistakable borrowings, but without Abu Kamil being explicitly mentioned and perhaps mediated by lost treatises, are also found in Fibonacci's Liber Abaci.[17]

On al-Khwarizmi

Abu Kamil was one of the earliest mathematicians to recognize

'Abd al-Hamīd ibn Turk.[3]
Abu Kamil wrote in the introduction of his Algebra:

I have studied with great attention the writings of the mathematicians, examined their assertions, and scrutinized what they explain in their works; I thus observed that the book by Muḥammad ibn Mūsā al-Khwārizmī known as Algebra is superior in the accuracy of its principle and the exactness of its argumentation. It thus behooves us, the community of mathematicians, to recognize his priority and to admit his knowledge and his superiority, as in writing his book on algebra he was an initiator and the discoverer of its principles, ...[11]

Notes

  1. .
  2. ^ .
  3. ^ a b c d e f g O'Connor, John J.; Robertson, Edmund F., "Abu Kamil", MacTutor History of Mathematics Archive, University of St Andrews
  4. ^ .
  5. ^ .
  6. .
  7. .
  8. ^ a b c d e f g h i Sesiano, Jacques (1997-07-31). "Abū Kāmil". Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer. pp. 4–5.
  9. .
  10. ^ .
  11. ^ Louis Charles Karpinski (1915). Robert of Chester's Latin Translation of the Algebra of Al-Khowarizmi, with an Introduction, Critical Notes and an English Version. Macmillan Co.
  12. ^ .
  13. .
  14. ^ Schwartz, R. K (2004). Issues in the Origin and Development of Hisab al-Khata'ayn (Calculation by Double False Position). Eighth North African Meeting on the History of Arab Mathematics. Radès, Tunisia. Available online at: http://facstaff.uindy.edu/~oaks/Biblio/COMHISMA8paper.doc Archived 2011-09-15 at the Wayback Machine and "Archived copy" (PDF). Archived from the original (PDF) on 2014-05-16. Retrieved 2012-06-08.{{cite web}}: CS1 maint: archived copy as title (link)
  15. JSTOR 2972073
    .
  16. ^ Høyrup, J. (2009). Hesitating progress-the slow development toward algebraic symbolization in abbacus-and related manuscripts, c. 1300 to c. 1550: Contribution to the conference" Philosophical Aspects of Symbolic Reasoning in Early Modern Science and Mathematics", Ghent, 27–29 August 2009. Preprints. Vol. 390. Berlin: Max Planck Institute for the History of Science.

References

Further reading