Bovine malignant catarrhal fever

Source: Wikipedia, the free encyclopedia.
Alcelaphine gammaherpesvirus 1 (AlHV-1), Ovine gammaherpesvirus 2 (OHV-2)
Virus classification Edit this classification
(unranked): Virus
Realm: Duplodnaviria
Kingdom:
Heunggongvirae
Phylum: Peploviricota
Class: Herviviricetes
Order: Herpesvirales
Family:
Orthoherpesviridae
Genus: Macavirus
Species:
Alcelaphine gammaherpesvirus 1 (AlHV-1), Ovine gammaherpesvirus 2 (OHV-2)
Eye Ring

Bovine malignant catarrhal fever (BMCF) is a fatal lymphoproliferative disease

buffalo.[2] In Southern Africa the disease is known as snotsiekte, from the Afrikaans.[4][5]

BMCF is an important disease where reservoir and susceptible animals mix. There is a particular problem with Bali cattle in Indonesia,[6] bison in the US[7] and in pastoralist herds in Eastern and Southern Africa.[8][9]

Disease outbreaks in cattle are usually sporadic although infection of up to 40% of a herd has been reported. The reasons for this are unknown. Some species appear to be particularly susceptible, for example Père David's deer,[10] Bali cattle[6] and bison,[7] with many deer dying within 48 hours of the appearance of the first symptoms and bison within three days.[1][11] In contrast, post infection cattle will usually survive a week or more.[12]

Epidemiology

The term bovine malignant catarrhal fever has been applied to three different patterns of disease:

The incubation period of BMCF is not known, however intranasal challenge with AHV-1 induced MCF in one hundred percent of challenged cattle between 2.5 and 6 weeks.[25] Shedding of the virus is greater from 6–9 month old lambs than from adults.[1] After experimental infection of sheep, there is limited viral replication in nasal cavity in the first 24 hours after infection, followed by later viral replication in other tissues.[1]

Clinical signs

The most common form of the disease is the head and eye form. Typical symptoms of this form include fever, depression, discharge from the eyes and nose, lesions of the buccal cavity and muzzle, swelling of the

nystagmus, and head pressing. Animals that become infected with the virus can become extremely sensitive to touch, especially around the head. It is also possible that become aggressive and charge at approaching animals and people. If the virus continues untreated, seizures could develop. Affected animal usually die five to ten days of the first signs of clinical signs. Once the cow shows clinical signs there is no chance of recovering.[26]

Peracute, alimentary and cutaneous clinical disease patterns have also been described.[27] Death usually occurs within ten days.[28] The mortality rate in symptomatic animals is 90 to 100%[21] Treatment is supportive only.

Factors

There are many factors that can increase the chances of infection or affect the severity of an outbreak. The number of animals in the herd, population density and species of the susceptible hosts are huge factors. Other factors include closeness of contact and amount of virus available for transmission.[29]

Diagnosis

Diagnosis of BMCF depends on a combination of history and symptoms, histopathology[27] and detection in the blood or tissues of viral antibodies by ELISA[30][31] or of viral DNA by PCR.[22][32][33] The characteristic histologic lesions of MCF are lymphocytic arteritis with necrosis of the blood vessel wall and the presence of large T lymphocytes mixed with other cells.[1] The similarity of MCF clinical signs to other enteric diseases, for example blue tongue, mucosal disease and foot and mouth make laboratory diagnosis of MCF important.[34] The world organisation for animal health[27] recognises histopathology as the definitive diagnostic test, but laboratories have adopted other approaches with recent developments in molecular virology. No vaccine has as yet been developed.

molecular sequencing. However Anderson et al 2008 do find some usable differences, mostly necrosis or lack of necrosis, and lymphoid accumulation.[35]

Life cycle

Infection of

B lymphocytes to be present but irrelevant in MCF lesions.[1]

Ovine

Ovine strains have been investigated by Meier-Trummer et al 2009 (

Bovine

Bison

Bison bison are found by Nelson et al 2010 to suffer widespread mucosal necrosis but rarely occlusive thrombosis, and they judge thrombosis to be hardly able to explain the incidences[spelling?] of necrosis.[1]

Nelson also find CD8+ and CD3+ to be the most common immune cell types in lesions.[1]

Bos

CD8+ and CD4+ are the most common immune cell types in lesions found by Nelson et al 2010.[1]

Prognosis

Bovine malignant catarrhal fever usually is fatal in susceptible species like cattle and bison, and any animal that survives will remain infectious for the rest of its life even if it shows no subsequent signs of the disease. Such survivors may relapse and suffer attacks in later life, but what is of more practical importance is that animals with latent infections may be unrecognised carriers that cause unexplained cases. This possibility must be borne in mind when seeking the source of mysterious outbreaks.[29]

Vaccine

Unfortunately a vaccine for malignant catarrhal fever (MCF) has not yet been developed.[1] Developing a vaccine has been difficult because the virus will not grow in cell culture and until recently it was not known why. Researchers at the Agricultural Research Service (ARS) found that the virus undergoes changes within the animal's body, a process known as "cell tropism switching". In cell tropism switching, the virus targets different cells at different points in its life cycle. This phenomenon explains why it has been impossible to grow the virus on any one particular cell culture.

Because the virus is transmitted from sheep to bison and cattle, researchers are first focusing on the viral life cycle in sheep. The viral life cycle is outlined in three stages: entry, maintenance, and shedding. Entry occurs through the sheep's nasal cavity and enters into the lungs where it replicates. The virus undergoes a tropic change and infects

lymphocytes, also known as white blood cells, which play a role in the sheep's immune system. In the maintenance stage the virus remains on the sheep's lymphocytes and circulates the body. Finally, during the shedding stage, the virus undergoes another change and shifts its target cells from lymphocytes to nasal cavity cells, where it is then shed through nasal secretions.[36] This discovery undoubtedly puts scientists on the right track for developing a vaccine – starting with the correct cell culture for each stage of the virus lifecycle – but ARS researchers are also looking into alternative methods to develop a vaccine. Researchers are experimenting with the MCF virus that infects topi (an African antelope) because it will grow in cell culture and does not infect cattle. Researchers hope that inserting genes from the sheep MCF virus into the topi MCF virus will ultimately be an effective MCF vaccine for cattle and bison.[36]
While there is much ground left to cover, scientists are getting closer and closer to developing a vaccine.

References

  1. ^ .
  2. ^ .
  3. .
  4. .
  5. . National Academies. pp. 52–. NAP:13180.
  6. ^ .
  7. ^ .
  8. ^ Cleaveland S; Kusiluka L; Ole Kuwai J; Bell C; Kazwala R. (2001). "Assessing the impact of Malignant Catarrhal Fever in Ngorongoro District, Tanzania" (PDF). Animal Health Programme, Department for International Development. pp. 57–72. Retrieved 9 September 2020.
  9. PMID 17123651
    .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. ^ Boone, R. B.; Coughenour, M. B. (2001). A system for integrated management and assessment of east African pastoral lands. Balancing food security, wildlife conservation, and ecosystem integrity. Final report to the Global Livestock Collaborative Research Support Program (Report).
  18. ^ .
  19. .
  20. .
  21. ^ a b "Malignant Catarrhal fever" (PDF). The Center for Food Security and Public Health at Iowa State University. 2005. Retrieved 2006-05-13.
  22. ^
    PMID 11139205
    .
  23. .
  24. .
  25. .
  26. ^ "NADIS Animal Health Skills - Malignant Catarrhal Fever (MCF)". www.nadis.org.uk. Retrieved 2019-04-02.
  27. ^ a b c OIE. OIE Manual of Diagnostic Tests and Vaccines for terrestrial Animal (5th ed.). France. pp. 570–579.
  28. ^ Carter, G.R.; Flores, E.F.; Wise, D.J. (2006). "Herpesviridae". A Concise Review of Veterinary Virology. Retrieved 2006-06-10.
  29. ^ a b "Overview of Malignant Catarrhal Fever - Generalized Conditions". Merck Veterinary Manual. Retrieved 2019-04-02.
  30. PMID 16621342
    .
  31. .
  32. .
  33. .
  34. .
  35. ^ .
  36. ^ a b "Figuring Out Puzzling Animal Diseases". USDA Agricultural Research Service. 2010-04-02. Archived from the original on 2010-04-05. Retrieved July 9, 2017.

External links