Cardinality of the continuum

Source: Wikipedia, the free encyclopedia.

In

real numbers
, sometimes called the continuum. It is an infinite cardinal number and is denoted by (lowercase Fraktur "c") or [1]

The real numbers are more numerous than the

natural numbers
. Moreover, has the same number of elements as the power set of . Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is

This was proven by

bijective functions
: two sets have the same cardinality if, and only if, there exists a bijective function between them.

Between any two real numbers a < b, no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those contained in the whole set of real numbers. In other words, the

equinumerous
with . This is also true for several other infinite sets, such as any n-dimensional Euclidean space (see
space filling curve
). That is,

The smallest infinite cardinal number is (aleph-null). The second smallest is (aleph-one). The continuum hypothesis, which asserts that there are no sets whose cardinality is strictly between and , means that .[2] The truth or falsity of this hypothesis is undecidable and cannot be proven within the widely used Zermelo–Fraenkel set theory with axiom of choice (ZFC).

Properties

Uncountability

uncountably infinite
. That is, is strictly greater than the cardinality of the
natural numbers
, :

In practice, this means that there are strictly more real numbers than there are integers. Cantor proved this statement in several different ways. For more information on this topic, see

Cantor's first uncountability proof and Cantor's diagonal argument
.

Cardinal equalities

A variation of Cantor's diagonal argument can be used to prove Cantor's theorem, which states that the cardinality of any set is strictly less than that of its power set. That is, (and so that the power set of the natural numbers is uncountable).[3] In fact, the cardinality of , by definition , is equal to . This can be shown by providing one-to-one mappings in both directions between subsets of a countably infinite set and real numbers, and applying the

binary expansions.[5]
In the other direction, the binary expansions of numbers in the half-open interval , viewed as sets of positions where the expansion is one, almost give a one-to-one mapping from subsets of a countable set (the set of positions in the expansions) to real numbers, but it fails to be one-to-one for numbers with terminating binary expansions, which can also be represented by a non-terminating expansion that ends in a repeating sequence of 1s. This can be made into a one-to-one mapping by that adds one to the non-terminating repeating-1 expansions, mapping them into .[5] Thus, we conclude that[4][5]

The cardinal equality can be demonstrated using

cardinal arithmetic
:

By using the rules of cardinal arithmetic, one can also show that

where n is any finite cardinal ≥ 2 and

where is the cardinality of the power set of R, and .

Alternative explanation for 𝔠 = 2א‎0

Every real number has at least one infinite

decimal expansion
. For example,

1/2 = 0.50000...
1/3 = 0.33333...
π = 3.14159....

(This is true even in the case the expansion repeats, as in the first two examples.)

In any given case, the number of decimal places is

one-to-one correspondence
with the set of natural numbers . This makes it sensible to talk about, say, the first, the one-hundredth, or the millionth decimal place of π. Since the natural numbers have cardinality each real number has digits in its expansion.

Since each real number can be broken into an integer part and a decimal fraction, we get:

where we used the fact that

On the other hand, if we map to and consider that decimal fractions containing only 3 or 7 are only a part of the real numbers, then we get

and thus

Beth numbers

The sequence of beth numbers is defined by setting and . So is the second beth number, beth-one:

The third beth number, beth-two, is the cardinality of the power set of (i.e. the set of all subsets of the

real line
):

The continuum hypothesis

The continuum hypothesis asserts that is also the second aleph number, .[2] In other words, the continuum hypothesis states that there is no set whose cardinality lies strictly between and

This statement is now known to be independent of the axioms of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), as shown by Kurt Gödel and Paul Cohen.[6][7][8] That is, both the hypothesis and its negation are consistent with these axioms. In fact, for every nonzero natural number n, the equality = is independent of ZFC (case being the continuum hypothesis). The same is true for most other alephs, although in some cases, equality can be ruled out by König's theorem on the grounds of cofinality (e.g. ). In particular, could be either or , where is the

singular cardinal
.

Sets with cardinality of the continuum

A great many sets studied in mathematics have cardinality equal to . Some common examples are the following:

  • the real numbers
  • any (nondegenerate) closed or open interval in (such as the unit interval )
  • the
    transcendental numbers
    The set of real algebraic numbers is countably infinite (assign to each formula its Gödel number.) So the cardinality of the real algebraic numbers is . Furthermore, the real algebraic numbers and the real transcendental numbers are disjoint sets whose union is . Thus, since the cardinality of is , the cardinality of the real transcendental numbers is . A similar result follows for complex transcendental numbers, once we have proved that .
  • the Cantor set
  • Euclidean space [9]
  • the complex numbers

    Per Cantor's proof of the cardinality of Euclidean space,[9] . By definition, any can be uniquely expressed as for some . We therefore define the bijection

  • the power set of the natural numbers (the set of all subsets of the natural numbers)
  • the set of
    sequences
    of integers (i.e. all functions , often denoted )
  • the set of sequences of real numbers,
  • the set of all continuous functions from to
  • the Euclidean topology on (i.e. the set of all open sets in )
  • the
    Borel σ-algebra
    on (i.e. the set of all Borel sets in ).

Sets with greater cardinality

Sets with cardinality greater than include:

  • the set of all subsets of (i.e., power set )
  • the set 2R of indicator functions defined on subsets of the reals (the set is
    isomorphic
    to  – the indicator function chooses elements of each subset to include)
  • the set of all functions from to
  • the Lebesgue σ-algebra of , i.e., the set of all
    Lebesgue measurable
    sets in .
  • the set of all Lebesgue-integrable functions from to
  • the set of all Lebesgue-measurable functions from to
  • the Stone–Čech compactifications of , , and
  • the set of all automorphisms of the (discrete) field of complex numbers.

These all have cardinality (beth two)

See also

References

  1. ^ "Transfinite number | mathematics". Encyclopedia Britannica. Retrieved 2020-08-12.
  2. ^ a b Weisstein, Eric W. "Continuum". mathworld.wolfram.com. Retrieved 2020-08-12.
  3. ^ "Cantor theorem". Encyclopedia of Mathematics. EMS Press. 2001 [1994].
  4. ^ .
  5. ^ .
  6. .
  7. .
  8. .
  9. ^
    American Mathematical Monthly
    , March 2011.

Bibliography

This article incorporates material from cardinality of the continuum on

Creative Commons Attribution/Share-Alike License
.