Charge qubit

Source: Wikipedia, the free encyclopedia.
Circuit diagram of a charge qubit circuit. The island (dotted line) is formed by the superconducting electrode between the gate capacitor and the junction capacitance.

In

.

Typical

T2 coherence times for a charge qubit are on the order of 1–2 μs.[5] Recent work has shown T2 times approaching 100 μs using a type of charge qubit known as a transmon inside a three-dimensional superconducting cavity.[6][7] Understanding the limits of T2 is an active area of research in the field of superconducting quantum computing
.

Fabrication

Charge qubits are fabricated using techniques similar to those used for

aluminum oxide
) is deposited.

Hamiltonian

If the Josephson junction has a junction capacitance , and the gate capacitor , then the charging (Coulomb) energy of one Cooper pair is:

If denotes the number of excess Cooper pairs in the island (i.e. its net charge is ), then the Hamiltonian is:[4]

where is a control parameter known as effective offset charge ( is the gate voltage), and the Josephson energy of the tunneling junction.

At low temperature and low gate voltage, one can limit the analysis to only the lowest and states, and therefore obtain a two-level quantum system (a.k.a. qubit).

Note that some recent papers[8][9] adopt a different notation, and define the charging energy as that of one electron:

and then the corresponding Hamiltonian is:

Benefits

To-date, the realizations of qubits that have had the most success are ion traps and NMR, with Shor's algorithm even being implemented using NMR.[10] However, it is hard to see these two methods being scaled to the hundreds, thousands, or millions of qubits necessary to create a quantum computer. Solid-state representations of qubits are much more easily scalable, but they themselves have their own problem: decoherence. Superconductors, however, have the advantage of being more easily scaled, and they are more coherent than normal solid-state systems.[10]

Experimental progresses

The implementation of Superconducting charge qubits have been progressing quickly since 1996. Design was theoretically described in 1997 by Shnirman,

Steven M. Girvin
and their colleagues .

References

  1. S2CID 250887469
    .
  2. .
  3. .
  4. ^ .
  5. .
  6. .
  7. ^ C. Rigetti et al., "Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms," arXiv:1202.5533 (2012)
  8. S2CID 118921729
    .
  9. .
  10. ^ a b Superconducting Charge Qubits, by Denzil Anthony Rodrigues, page 3
  11. S2CID 15467259
    .
  12. ^ Vincent Bouchiat (21 February 1997). Quantum Coherence of the Charge in a single-Cooper-pair box circuit (PDF) (PhD). Paris 6 University.
  13. S2CID 4392755
    .
  14. .