Ion trap

Source: Wikipedia, the free encyclopedia.
Paul trap which forms a potential via a combination of static and oscillating electric fields.[2]

Penning traps can be used for precise magnetic measurements in spectroscopy. Studies of quantum state manipulation most often use the Paul trap. This may lead to a

CRTs) can use an ion trap to prevent degradation of the cathode
by positive ions.

History

The physical principles of ion traps were first explored by F. M. Penning (1894–1953), who observed that electrons released by the cathode of an ionization vacuum gauge follow a long cycloidal path to the anode in the presence of a sufficiently strong magnetic field.[6] A scheme for confining charged particles in three dimensions without the use of magnetic fields was developed by W. Paul based on his work with quadrupole mass spectrometers.

Ion traps were used in

CRT faces around 1958, to protect the phosphor screen from ions.[7] The ion trap must be delicately adjusted for maximum brightness.[8][9]

Theory

Paul trap
. Axial motion (red arrow) is parallel to the radial electrodes and radial motion takes place in the plane given by the green arrows. In a Paul trap, axial motion is confined by a static field and radial motion by the oscillating field. In a Penning trap, axial motion is confined by the static electric field and radial motion is confined by the static magnetic field.

Any charged particle, such as an

Paul trap
). Ion motion and confinement in the trap is generally divided into axial and radial components, which are typically addressed separately by different fields. In both Paul and Penning traps, axial ion motion is confined by a static electric field. Paul traps use an oscillating electric field to confine the ion radially and Penning traps generate radial confinement with a static magnetic field.

Paul Trap

A Paul trap that uses an oscillating quadrupole field to trap ions radially and a static potential to confine ions axially. The quadrupole field is realized by four parallel electrodes laying in the -axis positioned at the corners of a square in the -plane. Electrodes diagonally opposite each other are connected and an a.c. voltage is applied. Using Maxwell's equations, the electric field produced by this potential is electric field . Applying

Newton's second law
to an ion of charge and mass in this a.c. electric field, we can find the force on the ion using . We wind up with

.

Assuming that the ion has zero initial velocity, two successive integrations give the velocity and displacement as

,
,

where is a constant of integration. Thus, the ion oscillates with angular frequency and amplitude proportional to the electric field strength and is confined radially.

Working specifically with a linear Paul trap, we can write more specific equations of motion. Along the -axis, an analysis of the radial symmetry yields a potential[10]

.

The constants and are determined by boundary conditions on the electrodes and satisfies Laplace's equation . Assuming the length of the electrodes is much greater than their separation , it can be shown that

.

Since the electric field is given by the gradient of the potential, we get that

.

Defining , the equations of motion in the -plane are a simplified form of the

Mathieu equation
,

.

Penning Trap

The radial trajectory of an ion in a Penning trap; the ratio of cyclotron frequency to magnetron frequency is .

A standard configuration for a Penning trap consists of a ring electrode and two end caps. A static voltage differential between the ring and end caps confines ions along the axial direction (between end caps). However, as expected from Earnshaw's theorem, the static electric potential is not sufficient to trap an ion in all three dimensions. To provide the radial confinement, a strong axial magnetic field is applied.

For a uniform electric field , the force accelerates a positively charged ion along the -axis. For a uniform magnetic field , the Lorentz force causes the ion to move in circular motion with cyclotron frequency

.

Assuming an ion with zero initial velocity placed in a region with and , the equations of motion are

,
,
.

The resulting motion is a combination of oscillatory motion around the -axis with frequency and a drift velocity in the -direction. The drift velocity is perpendicular to the direction of the electric field.

For the radial electric field produced by the electrodes in a Penning trap, the drift velocity will precess around the axial direction with some frequency , called the magnetron frequency. An ion will also have a third characteristic frequency between the two end cap electrodes. The frequencies usually have widely different values with .[11]

Ion trap mass spectrometers

A linear ion trap component of a mass spectrometer

An ion trap

Kingdon trap.[14] The Orbitrap, introduced in 2005, is based on the Kingdon trap.[15]
Other types of mass spectrometers may also use a linear quadrupole ion trap as a selective mass filter.

Penning ion trap

FTICR mass spectrometer – an example of a Penning trap instrument

A

ions and stable charged subatomic particles
. Precision studies of the electron magnetic moment by Dehmelt and others are an important topic in modern physics.

Penning traps can be used in

The Penning Trap was invented by Frans Michel Penning and Hans Georg Dehmelt, who built the first trap in the 1950s.[19]

Paul ion trap

Schematic diagram of ion trap mass spectrometer with an electrospray ionization (ESI) source and Paul ion trap.

A Paul trap is a type of

mass spectrometer. The invention of the 3D quadrupole ion trap itself is attributed to Wolfgang Paul who shared the Nobel Prize in Physics in 1989 for this work.[20][21] The trap consists of two hyperbolic metal electrodes with their foci facing each other and a hyperbolic ring electrode halfway between the other two electrodes. Ions
are trapped in the space between these three electrodes by the oscillating and static electric fields.

Kingdon trap and orbitrap

Partial cross-section of Orbitrap mass analyzer – an example of a Kingdon trap.

A Kingdon trap consists of a thin central wire, an outer cylindrical electrode and isolated end cap electrodes at both ends. A static applied voltage results in a radial logarithmic potential between the electrodes.[22] In a Kingdon trap there is no potential minimum to store the ions; however, they are stored with a finite angular momentum about the central wire and the applied electric field in the device allows for the stability of the ion trajectories.[23] In 1981, Knight introduced a modified outer electrode that included an axial quadrupole term that confines the ions on the trap axis.[24] The dynamic Kingdon trap has an additional AC voltage that uses strong defocusing to permanently store charged particles.[25] The dynamic Kingdon trap does not require the trapped ions to have angular momentum with respect to the filament. An Orbitrap is a modified Kingdon trap that is used for mass spectrometry. Though the idea has been suggested and computer simulations performed[26] neither the Kingdon nor the Knight configurations were reported to produce mass spectra, as the simulations indicated mass resolving power would be problematic.

Trapped ion quantum computer

Some experimental work towards developing quantum computers use

Lasers are applied to induce coupling
between the qubit states (for single qubit operations) or between the internal qubit states and external motional states (for entanglement between qubits).

See also

References

  1. S2CID 15918021
    .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. ^ Hartson, Ted (2004). "How the World Changed Television" (PDF). Retrieved 2008-10-13.
  8. ^ Magnet for cathode-ray tube ion traps
  9. ^ Ion Trap for a Cathode Ray Tube
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. (PDF) on 2017-03-13. Retrieved 2014-08-09.
  17. ^ Häffner, Hartmut, Christian F. Roos, and Rainer Blatt. "Quantum computing with trapped ions." Physics Reports 469.4 (2008): 155–203.
  18. ^ Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S., Fourier-transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17, 1–35.
  19. ^ "Hans G. Dehmelt – Biographical". Nobel Prize. 1989. Retrieved June 1, 2014.
  20. ^ Paul W., Steinwedel H. (1953). "Ein neues Massenspektrometer ohne Magnetfeld". RZeitschrift für Naturforschung A 8 (7): 448–450
  21. ^ DE 944900  "Verfahren zur Trennung bzw. zum getrennten Nachweis von Ionen verschiedener spezifischer Ladung", W. Paul and H. Steinwedel, filed on December 24, 1953, priority December 23, 1953
  22. .
  23. .
  24. .
  25. .
  26. .

External links