Euler line

Source: Wikipedia, the free encyclopedia.
circumcenter
)

In

circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.[1]

The concept of a triangle's Euler line extends to the Euler line of other shapes, such as the quadrilateral and the tetrahedron.

Triangle centers on the Euler line

Individual centers

Euler showed in 1765 that in any triangle, the orthocenter, circumcenter and centroid are collinear.[2] This property is also true for another triangle center, the nine-point center, although it had not been defined in Euler's time. In equilateral triangles, these four points coincide, but in any other triangle they are all distinct from each other, and the Euler line is determined by any two of them.

Other notable points that lie on the Euler line include the de Longchamps point, the Schiffler point, the Exeter point, and the Gossard perspector.[1] However, the incenter generally does not lie on the Euler line;[3] it is on the Euler line only for isosceles triangles,[4] for which the Euler line coincides with the symmetry axis of the triangle and contains all triangle centers.

The

orthic and tangential triangles is also on the Euler line.[5]: p. 447 [6]
: p. 102 

Proofs

A vector proof

Let be a triangle. A proof of the fact that the circumcenter , the centroid and the orthocenter are collinear relies on free vectors. We start by stating the prerequisites. First, satisfies the relation

This follows from the fact that the absolute barycentric coordinates of are . Further, the problem of Sylvester[7] reads as

Now, using the vector addition, we deduce that

By adding these three relations, term by term, we obtain that

In conclusion, , and so the three points , and (in this order) are collinear.

In Dörrie's book,[7] the Euler line and the problem of Sylvester are put together into a single proof. However, most of the proofs of the problem of Sylvester rely on the fundamental properties of free vectors, independently of the Euler line.

Properties

Distances between centers

On the Euler line the centroid G is between the circumcenter O and the orthocenter H and is twice as far from the orthocenter as it is from the circumcenter:[6]: p.102 

The segment GH is a diameter of the orthocentroidal circle.

The center N of the nine-point circle lies along the Euler line midway between the orthocenter and the circumcenter:[1]

Thus the Euler line could be repositioned on a number line with the circumcenter O at the location 0, the centroid G at 2t, the nine-point center at 3t, and the orthocenter H at 6t for some scale factor t.

Furthermore, the squared distance between the centroid and the circumcenter along the Euler line is less than the squared

circumradius R2 by an amount equal to one-ninth the sum of the squares of the side lengths a, b, and c:[6]
: p.71 

In addition,[6]: p.102 

Representation

Equation

Let A, B, C denote the vertex angles of the reference triangle, and let x : y : z be a variable point in trilinear coordinates; then an equation for the Euler line is

An equation for the Euler line in

barycentric coordinates
is[8]

Parametric representation

Another way to represent the Euler line is in terms of a parameter t. Starting with the circumcenter (with trilinear coordinates ) and the orthocenter (with trilinears every point on the Euler line, except the orthocenter, is given by the trilinear coordinates

formed as a linear combination of the trilinears of these two points, for some t.

For example:

  • The
    circumcenter
    has trilinears corresponding to the parameter value
  • The centroid has trilinears corresponding to the parameter value
  • The nine-point center has trilinears corresponding to the parameter value
  • The de Longchamps point has trilinears corresponding to the parameter value

Slope

In a Cartesian coordinate system, denote the slopes of the sides of a triangle as and and denote the slope of its Euler line as . Then these slopes are related according to[9]: Lemma 1 

Thus the slope of the Euler line (if finite) is expressible in terms of the slopes of the sides as

Moreover, the Euler line is parallel to an acute triangle's side BC if and only if[9]: p.173 

Relation to inscribed equilateral triangles

The locus of the centroids of equilateral triangles inscribed in a given triangle is formed by two lines perpendicular to the given triangle's Euler line.[10]: Coro. 4 

In special triangles

Right triangle

In a

median to the hypotenuse—that is, it goes through both the right-angled vertex and the midpoint of the side opposite that vertex. This is because the right triangle's orthocenter, the intersection of its altitudes, falls on the right-angled vertex while its circumcenter, the intersection of its perpendicular bisectors
of sides, falls on the midpoint of the hypotenuse.

Isosceles triangle

The Euler line of an

axis of symmetry. In an isosceles triangle the incenter
falls on the Euler line.

Automedian triangle

The Euler line of an automedian triangle (one whose medians are in the same proportions, though in the opposite order, as the sides) is perpendicular to one of the medians.[11]

Systems of triangles with concurrent Euler lines

Consider a triangle ABC with

Fermat–Torricelli points F1 and F2. The Euler lines of the 10 triangles with vertices chosen from A, B, C, F1 and F2 are concurrent at the centroid of triangle ABC.[12]

The Euler lines of the four triangles formed by an

orthocenter of the triangle with vertices at the other three points) are concurrent at the nine-point center common to all of the triangles.[6]
: p.111 

Generalizations

Quadrilateral

In a

collinear in this order on the Euler line, and HG = 2GO.[13]

Tetrahedron

A

twelve-point sphere
also lies on the Euler line.

Simplicial polytope

A simplicial polytope is a polytope whose facets are all simplices (plural of simplex). For example, every polygon is a simplicial polytope. The Euler line associated to such a polytope is the line determined by its centroid and circumcenter of mass. This definition of an Euler line generalizes the ones above.[14]

Suppose that is a polygon. The Euler line is sensitive to the symmetries of in the following ways:

1. If has a line of reflection symmetry , then is either or a point on .

2. If has a center of rotational symmetry , then .

3. If all but one of the sides of have equal length, then is orthogonal to the last side.

Related constructions

A triangle's Kiepert parabola is the unique parabola that is tangent to the sides (two of them

directrix.[15]
: p. 63 

References

  1. ^ a b c Kimberling, Clark (1998). "Triangle centers and central triangles". Congressus Numerantium. 129: i–xxv, 1–295.
  2. MR0061061. Summarized at: Dartmouth College.
  3. .
  4. , It is well known that the incenter of a Euclidean triangle lies on its Euler line connecting the centroid and the circumcenter if and only if the triangle is isosceles.
  5. ^ .
  6. ^ a b c d e f Altshiller-Court, Nathan, College Geometry, Dover Publications, 2007 (orig. Barnes & Noble 1952).
  7. ^ , pages 141 (Euler's Straight Line) and 142 (Problem of Sylvester)
  8. ^ Scott, J.A., "Some examples of the use of areal coordinates in triangle geometry", Mathematical Gazette 83, November 1999, 472-477.
  9. ^ a b Wladimir G. Boskoff, Laurent¸iu Homentcovschi, and Bogdan D. Suceava, "Gossard's Perspector and Projective Consequences", Forum Geometricorum, Volume 13 (2013), 169–184. [1]
  10. ^ Francisco Javier Garc ́ıa Capita ́n, "Locus of Centroids of Similar Inscribed Triangles", Forum Geometricorum 16, 2016, 257–267 .http://forumgeom.fau.edu/FG2016volume16/FG201631.pdf
  11. JSTOR 3620241
    .
  12. ^ Beluhov, Nikolai Ivanov. "Ten concurrent Euler lines", Forum Geometricorum 9, 2009, pp. 271–274. http://forumgeom.fau.edu/FG2009volume9/FG200924index.html
  13. ^ Myakishev, Alexei (2006), "On Two Remarkable Lines Related to a Quadrilateral" (PDF), Forum Geometricorum, 6: 289–295.
  14. S2CID 12307207
    .
  15. ^ Scimemi, Benedetto, "Simple Relations Regarding the Steiner Inellipse of a Triangle", Forum Geometricorum 10, 2010: 55–77.

External links