Gas leak

Source: Wikipedia, the free encyclopedia.

A gas leak refers to a

refrigerant gas into the atmosphere are especially harmful, because of their global warming potential and ozone depletion potential.[2]

Leaks of gases associated with industrial operations and equipment are also generally known as

fugitive emissions. Natural gas leaks from fossil fuel extraction and use are known as fugitive gas emissions
. Such unintended leaks should not be confused with similar intentional types of gas release, such as:

  • gas venting emissions which are controlled releases, and often practised as a part of routine operations, or
  • "emergency pressure releases" which are intended to prevent equipment damage and safeguard life.

Gas leaks should also not be confused with "gas seepage" from the earth or oceans - either natural or due to human activity.

Fire and explosion safety

Pure natural gas is colorless and odorless, and is composed primarily of

mercaptans are usually added, to assist in identifying leaks. This odor may be perceived as rotting eggs, or a faintly unpleasant skunk
smell. Persons detecting the odor must evacuate the area and abstain from using open flames or operating electrical equipment, to reduce the risk of fire and explosion.

As a result of the

safety inspections for gas leaks in homes and other buildings receiving natural gas. The gas company is required to inspect gas meters
and inside gas piping from the point of entry into the building to the outlet side of the gas meter for gas leaks. This may require entry into private homes by the natural gas companies to check for hazardous conditions.

Harm to vegetation

Gas leaks can damage or kill plants.[4][5] In addition to leaks from natural gas pipes, methane and other gases migrating from landfill garbage disposal sites can also cause chlorosis and necrosis in grass, weeds, or trees.[6] In some cases, leaking gas may migrate as far as 100 feet (30 m) from the source of the leak to an affected tree.[7]

Harm to animals

Methane is an

animal sentinel to detect dangerously high concentrations of naturally occurring coal gas.[8]

Greenhouse gas emissions

Methane, the primary constituent of natural gas, is up to 120 times as potent a greenhouse gas as carbon dioxide. Thus, the release of unburned natural gas produces much stronger effects than the carbon dioxide that would have been released if the gas had been burned as intended.[9]

Leak grades

In the United States, most state and federal agencies have adopted the Gas Piping and Technology Committee (GPTC) standards for grading natural gas leaks.

A Grade 1 leak is a leak that represents an existing or probable hazard to persons or property, and requires immediate repair or continuous action until the conditions are no longer hazardous. Examples of a Grade 1 leak are:

  • Any leak which, in the judgment of operating personnel at the scene, is regarded as an immediate hazard.
  • Escaping gas that has ignited.
  • Any indication of gas which has migrated into or under a building, or into a foreign sub-structure.
  • Any reading at the outside wall of a building, or where gas would likely migrate to an outside wall of a building.
  • Any reading of 80% LEL, or greater, in a confined space.
  • Any reading of 80% LEL, or greater in small substructures (other than gas associated sub structures) from which gas would likely migrate to the outside wall of a building.
  • Any leak that can be seen, heard, or felt, and which is in a location that may endanger the general public or property.

A Grade 2 leak is a leak that is recognized as being non-hazardous at the time of detection, but justifies scheduled repair based on probable future hazard. Examples of a Grade 2 Leak are:

A Grade 3 leak is non-hazardous at the time of detection and can be reasonably expected to remain non-hazardous. Examples of a Grade 3 Leak are:

  • Any reading of less than 80% LEL in small gas associated substructures.
  • Any reading under a street in areas without wall-to-wall paving where it is unlikely the gas could migrate to the out-side wall of a building.
  • Any reading of less than 20% LEL in a confined space.

Studies

In 2012,

Street View. This survey differed from the previous studies in that an estimate of leak severity was produced, rather than just leak detection. This map should help the gas utility to prioritize leak repairs, as well as raising public awareness of the problem.[9]

In 2017, Rhode Island released an estimated 15.7 million metric tons of greenhouse gases, about a third of which comes from leaks in natural gas pipes. This figure, published in 2019, was calculated based on an assumed leakage rate of 2.7% (as that is the rate of leakage in the nearby city of Boston). The study's authors estimated that fixing the leaks would incur an annual cost of $1.6 billion to $4 billion.[10]

Regulation

Massachusetts

Legislation passed in 2014

Unitil say they will meet this target, but NSTAR says it will take 25 years to complete.[12][13]
Leaks, statistics on leak-prone materials, and financial statements are reported annually to the Department of Public Utilities, which also has responsibility for rate-setting.

Additional proposals not included in the law would have required grade 3 leaks to be repaired during road construction, and priority for leaks which are killing trees or which were near hospitals or churches.[14][15]

An attorney for the Conservation Law Foundation stated that the leaks were worth $38.8 million in lost natural gas, which also contributes 4% of the state's

Edward J. Markey concluded that Massachusetts consumers paid approximately $1.5 billion from 2000–2011 for gas which leaked and benefited no one.[14] Markey has also backed legislation that would implement similar requirements at the national level, along with financing provisions for repairs.[14][needs update
]

History

Catastrophic gas leaks, such as the Bhopal disaster are well-recognized as problems, but the more-subtle effects of chronic low-level leaks have been slower to gain recognition.

Other contexts

In work with dangerous gases (such as in a lab or industrial setting), a gas leak may require hazmat emergency response, especially if the leaked material is flammable, explosive, corrosive, or toxic.

See also

References

  1. .
  2. .
  3. ^ "Text of H.R. 3609 (107th): Pipeline Safety Improvement Act of 2002 (Passed Congress version)". GovTrack.us.
  4. ^ Lindsay, Jay (March 26, 2007). "Trust Targets Gas Leaks That Kill Trees". The Washington Post. Retrieved 2013-11-28.
  5. ^ Joyce, Christopher. "Boston's Leaky Gas Lines May Be Tough On The Trees". NPR. National Public Radio. Archived from the original on 4 March 2016. Retrieved 2013-11-28.
  6. ^ Fraedrich, Bruce R. "Gas Injury to Trees: Identification and Treatment" (PDF). Bartlett Tree Research Laboratories. Archived from the original (PDF) on 2013-12-03. Retrieved 2013-11-28.
  7. ^ Baniecki, John F. "Gas Leak". Tree Problems. West Virginia University Extension Service. Archived from the original on December 3, 2013. Retrieved 2013-11-28.
  8. .
  9. ^ a b c d Struck, Doug (July 16, 2014). "Google Earth captures city's leaky gas pipelines". Boston Globe. Retrieved 2014-07-18.
  10. ^ Kuffner, Alex (12 September 2019). "R.I. greenhouse-gas emissions rise 45% in new calculation of methane leaks". Providence Journal. Retrieved 13 September 2019.
  11. ^ "Acts of 2014, Chapter 149: AN ACT RELATIVE TO NATURAL GAS LEAKS".
  12. ^ "Executive Office of Energy and Environmental Affairs" (PDF). Mass.gov. Archived from the original (PDF) on 2015-06-15. Retrieved 2018-09-15.
  13. ^ "Gas System Enhancement Plan Orders".
  14. ^ a b c Ailworth, Erin (July 7, 2014). "New Mass. law aims to speed repairs to gas leaks". Boston Globe. Archived from the original on 2014-07-12. Retrieved 2014-07-18.
  15. ^ a b Metzger, Andy (Jun 11, 2013). "With natural gas leaks widespread, lawmakers revisit fixes". Wicked Local Marblehead. Archived from the original on December 3, 2013. Retrieved 2013-11-28.

External links