Gromov–Hausdorff convergence

Source: Wikipedia, the free encyclopedia.

In

Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff convergence
.

Gromov–Hausdorff distance

How far and how near are some figures under the Gromov–Hausdorff distance.

The Gromov–Hausdorff distance was introduced by David Edwards in 1975,

infimum of all numbers dH(f(X), g(Y)) for all (compact) metric spaces M and all isometric embeddings f : X → M and g : Y → M. Here dH denotes Hausdorff distance between subsets in M and the isometric embedding is understood in the global sense, i.e. it must preserve all distances, not only infinitesimally small ones; for example no compact Riemannian manifold admits such an embedding into Euclidean space
of the same dimension.

The Gromov–Hausdorff distance turns the set of all isometry classes of compact metric spaces into a metric space, called Gromov–Hausdorff space, and it therefore defines a notion of convergence for sequences of compact metric spaces, called Gromov–Hausdorff convergence. A metric space to which such a sequence converges is called the Gromov–Hausdorff limit of the sequence.

Some properties of Gromov–Hausdorff space

The Gromov–Hausdorff space is

separable.[5] It is also geodesic, i.e., any two of its points are the endpoints of a minimizing geodesic.[6][7] In the global sense, the Gromov–Hausdorff space is totally heterogeneous, i.e., its isometry group is trivial,[8] but locally there are many nontrivial isometries.[9]

Pointed Gromov–Hausdorff convergence

The pointed Gromov–Hausdorff convergence is an analog of Gromov–Hausdorff convergence appropriate for non-compact spaces. A pointed metric space is a pair (X,p) consisting of a metric space X and point p in X. A sequence (Xn, pn) of pointed metric spaces converges to a pointed metric space (Yp) if, for each R > 0, the sequence of closed R-balls around pn in Xn converges to the closed R-ball around p in Y in the usual Gromov–Hausdorff sense.[10]

Applications

The notion of Gromov–Hausdorff convergence was used by Gromov to prove that any discrete group with polynomial growth is virtually nilpotent (i.e. it contains a nilpotent subgroup of finite index). See Gromov's theorem on groups of polynomial growth. (Also see D. Edwards for an earlier work.) The key ingredient in the proof was the observation that for the Cayley graph of a group with polynomial growth a sequence of rescalings converges in the pointed Gromov–Hausdorff sense.

Another simple and very useful result in Riemannian geometry is Gromov's compactness theorem, which states that the set of Riemannian manifolds with

relatively compact in the Gromov–Hausdorff metric. The limit spaces are metric spaces. Additional properties on the length spaces have been proven by Cheeger and Colding.[11]

The Gromov–Hausdorff distance metric has been applied in the field of computer graphics and computational geometry to find correspondences between different shapes.[12] It also has been applied in the problem of motion planning in robotics.[13]

The Gromov–Hausdorff distance has been used by Sormani to prove the stability of the Friedmann model in Cosmology. This model of cosmology is not stable with respect to smooth variations of the metric.[14]

In a special case, the concept of Gromov–Hausdorff limits is closely related to large-deviations theory.[15]

The Gromov–Hausdorff distance metric has been used in neuroscience to compare brain networks.[16]

See also

References

  1. ^ David A. Edwards, "The Structure of Superspace", in "Studies in Topology", Academic Press, 1975, pdf Archived 2016-03-04 at the Wayback Machine
  2. ].
  3. ^ M. Gromov. "Structures métriques pour les variétés riemanniennes", edited by Lafontaine and Pierre Pansu, 1981.
  4. .
  5. ^ D. Burago, Yu. Burago, S. Ivanov, A Course in Metric Geometry, AMS GSM 33, 2001.
  6. S2CID 39754495
    .
  7. ].
  8. ].
  9. ].
  10. .
  11. .
  12. .
  13. ].
  14. .
  15. .
  16. .