Group with operators

Source: Wikipedia, the free encyclopedia.

In abstract algebra, a branch of mathematics, a group with operators or Ω-group is an algebraic structure that can be viewed as a group together with a set Ω that operates on the elements of the group in a special way.

Groups with operators were extensively studied by

Noether isomorphism theorems
.

Definition

A group with operators can be defined[1] as a group together with an action of a set on :

that is distributive relative to the group law:

For each , the application is then an endomorphism of G. From this, it results that a Ω-group can also be viewed as a group G with an indexed family of endomorphisms of G.

is called the operator domain. The associate endomorphisms[2] are called the homotheties of G.

Given two groups G, H with same operator domain , a homomorphism of groups with operators from to is a group homomorphism satisfying

for all and

A subgroup S of G is called a stable subgroup, -subgroup or -invariant subgroup if it respects the homotheties, that is

for all and

Category-theoretic remarks

In

object of a functor category GrpM where M is a monoid (i.e. a category with one object) and Grp denotes the category of groups
. This definition is equivalent to the previous one, provided is a monoid (if not, we may expand it to include the identity and all compositions).

A morphism in this category is a natural transformation between two functors (i.e., two groups with operators sharing same operator domain M ). Again we recover the definition above of a homomorphism of groups with operators (with f the component of the natural transformation).

A group with operators is also a mapping

where is the set of group endomorphisms of G.

Examples

Applications

The

Jordan–Hölder theorem also holds in the context of groups with operators. The requirement that a group have a composition series is analogous to that of compactness in topology, and can sometimes be too strong a requirement. It is natural to talk about "compactness relative to a set", i.e. talk about composition series where each (normal
) subgroup is an operator-subgroup relative to the operator set X, of the group in question.

See also

  • Group action

Notes

  1. ^ Bourbaki 1974, p. 31.
  2. ^ Bourbaki 1974, pp. 30–31.
  3. ^ Mac Lane 1998, p. 41.

References

  • Bourbaki, Nicolas (1974). Elements of Mathematics : Algebra I Chapters 1–3. Hermann. .
  • Bourbaki, Nicolas (1998). Elements of Mathematics : Algebra I Chapters 1–3. Springer-Verlag. .
  • Mac Lane, Saunders (1998). Categories for the Working Mathematician. Springer-Verlag. .