Half-metal

Source: Wikipedia, the free encyclopedia.
The electronic structure of a half-metal. is the Fermi level, is the density of states for spin down (on the left) and spin up (on the right). In this case, the half-metal is conducting in the minority spin channel.

A half-metal is any substance that acts as a

Heusler alloys.[1]
Types of half-metallic compounds theoretically predicted so far include some Heusler alloys, such as Co2FeSi, NiMnSb, and PtMnSb; some Si-containing half–Heusler alloys with Curie temperatures over 600 K, such as NiCrSi and PdCrSi; some transition-metal oxides, including rutile structured CrO2; some perovskites, such as LaMnO3 and SeMnO3; and a few more simply structured zincblende (ZB) compounds, including CrAs and superlattices. NiMnSb and CrO2 have been experimentally determined to be half-metals at very low temperatures.

In half-metals, the valence band for one spin orientation is partially filled while there is a gap in the density of states for the other spin orientation. This results in conducting behavior for only electrons in the first spin orientation. In some half-metals, the majority spin channel is the conducting one while in others the minority channel is.[2]

Half-metals were first described in 1983, as an explanation for the electrical properties of

Heusler alloys.[3]

Some notable half-metals are chromium(IV) oxide, magnetite, and lanthanum strontium manganite (LSMO),[1] as well as chromium arsenide. Half-metals have attracted some interest for their potential use in spintronics.

References

Further reading