Jones polynomial
In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984.[1][2] Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.[3]
Definition by the bracket

Suppose we have an oriented link , given as a
First, we define the auxiliary polynomial (also known as the normalized bracket polynomial)
where denotes the writhe of in its given diagram. The writhe of a diagram is the number of positive crossings ( in the figure below) minus the number of negative crossings (). The writhe is not a knot invariant.
is a knot invariant since it is invariant under changes of the diagram of by the three Reidemeister moves. Invariance under type II and III Reidemeister moves follows from invariance of the bracket under those moves. The bracket polynomial is known to change by a factor of under a type I Reidemeister move. The definition of the polynomial given above is designed to nullify this change, since the writhe changes appropriately by or under type I moves.
Now make the substitution in to get the Jones polynomial . This results in a Laurent polynomial with integer coefficients in the variable .
Jones polynomial for tangles
This construction of the Jones polynomial for tangles is a simple generalization of the Kauffman bracket of a link. The construction was developed by Vladimir Turaev and published in 1990.[4]
Let be a non-negative integer and denote the set of all isotopic types of tangle diagrams, with ends, having no crossing points and no closed components (smoothings). Turaev's construction makes use of the previous construction for the Kauffman bracket and associates to each -end oriented tangle an element of the free -module , where is the ring of Laurent polynomials with integer coefficients in the variable .
Definition by braid representation
Jones' original formulation of his polynomial came from his study of operator algebras. In Jones' approach, it resulted from a kind of "trace" of a particular braid representation into an algebra which originally arose while studying certain models, e.g. the Potts model, in statistical mechanics.
Let a link L be given. A theorem of Alexander states that it is the trace closure of a braid, say with n strands. Now define a representation of the braid group on n strands, Bn, into the Temperley–Lieb algebra with coefficients in and . The standard braid generator is sent to , where are the standard generators of the Temperley–Lieb algebra. It can be checked easily that this defines a representation.
Take the braid word obtained previously from and compute where is the Markov trace. This gives , where is the bracket polynomial. This can be seen by considering, as Louis Kauffman did, the Temperley–Lieb algebra as a particular diagram algebra.
An advantage of this approach is that one can pick similar representations into other algebras, such as the R-matrix representations, leading to "generalized Jones invariants".
Properties
The Jones polynomial is characterized by taking the value 1 on any diagram of the unknot and satisfies the following skein relation:
where , , and are three oriented link diagrams that are identical except in one small region where they differ by the crossing changes or smoothing shown in the figure below:

The definition of the Jones polynomial by the bracket makes it simple to show that for a knot , the Jones polynomial of its mirror image is given by substitution of for in . Thus, an
Another remarkable property of this invariant states that the Jones polynomial of an alternating link is an alternating polynomial. This property was proved by Morwen Thistlethwaite[5] in 1987. Another proof of this last property is due to Hernando Burgos-Soto, who also gave an extension of the property to tangles.[6]
The Jones polynomial is not a complete invariant. There exist an infinite number of non-equivalent knots that have the same Jones polynomial. An example of two distinct knots having the same Jones polynomial can be found in the book by Murasugi.[7]
Colored Jones polynomial
For a positive integer , the -colored Jones polynomial is a generalisation of the Jones polynomial. It is the Reshetikhin–Turaev invariant associated with the -irreducible representation of the quantum group . In this scheme, the Jones polynomial is the 1-colored Jones polynomial, the Reshetikhin-Turaev invariant associated to the standard representation (irreducible and two-dimensional) of . One thinks of the strands of a link as being "colored" by a representation, hence the name.
More generally, given a link of components and representations of , the -colored Jones polynomial is the Reshetikhin–Turaev invariant associated to (here we assume the components are ordered). Given two representations and , colored Jones polynomials satisfy the following two properties:[8]
- ,
- , where denotes the 2-cabling of .
These properties are deduced from the fact that colored Jones polynomials are Reshetikhin-Turaev invariants.
Let be a knot. Recall that by viewing a diagram of as an element of the Temperley-Lieb algebra thanks to the Kauffman bracket, one recovers the Jones polynomial of . Similarly, the -colored Jones polynomial of can be given a combinatorial description using the Jones-Wenzl idempotents, as follows:
- consider the -cabling of ;
- view it as an element of the Temperley-Lieb algebra;
- insert the Jones-Wenzl idempotents on some parallel strands.
The resulting element of is the -colored Jones polynomial. See appendix H of [9] for further details.
Relationship to other theories
Link with Chern–Simons theory
As first shown by Edward Witten,[10] the Jones polynomial of a given knot can be obtained by considering
Link with quantum knot invariants
By substituting for the variable of the Jones polynomial and expanding it as the series of h each of the coefficients turn to be the
Link with the volume conjecture
By numerical examinations on some hyperbolic knots,
Link with Khovanov homology
In 2000 Mikhail Khovanov constructed a certain chain complex for knots and links and showed that the homology induced from it is a knot invariant (see Khovanov homology). The Jones polynomial is described as the Euler characteristic for this homology.
Detection of the unknot
It is an open question whether there is a nontrivial knot with Jones polynomial equal to that of the unknot. It is known that there are nontrivial links with Jones polynomial equal to that of the corresponding unlinks by the work of Morwen Thistlethwaite.[11] It was shown by Kronheimer and Mrowka that there is no nontrivial knot with Khovanov homology equal to that of the unknot.[12]
See also
Notes
- MR 0766964.
- MR 0908150.
- ^ "Jones Polynomials, Volume and Essential Knot Surfaces: A Survey" (PDF). Archived from the original (PDF) on 2020-12-09. Retrieved 2017-07-12.
- S2CID 121865582.
- .
- S2CID 13993750.
- ISBN 978-0-8176-4718-6.
- S2CID 27676682.
- ^ Ohtsuki, Quantum Invariants: A Study of Knots, 3-manifolds, and Their Sets
- S2CID 14951363.
- ISSN 0218-2165.
- S2CID 119586228.
References
- ISBN 0-8050-7380-9.
- Jones, Vaughan. "The Jones Polynomial" (PDF).
- JSTOR 1971403.
- . (explains the definition by bracket polynomial and its relation to Jones' formulation by braid representation)
- ISBN 978-0-387-98254-0.
- .
- Eliahou, Shalom; .
- arXiv:math/0611797.