KOI-256

Source: Wikipedia, the free encyclopedia.
KOI-256

White dwarf companion gravitationally bending the starlight of KOI-256
Observation data
J2000
Constellation Cygnus
Right ascension 19h 00m 44.42489s[1]
Declination +49° 33′ 55.2489″[1]
Characteristics
KOI-256 A
Evolutionary stage Red dwarf
Spectral type M3V
Apparent magnitude (Kepler) 15.37
Apparent magnitude (J) 12.701±0.024
Apparent magnitude (H) 12.001±0.019
Apparent magnitude (Ks) 11.783±0.023
Apparent magnitude (r) 15.754
Apparent magnitude (i) 14.636
Apparent magnitude (z) 14.059
R−I color index 1.118
J−H color index 0.700±0.031
J−K color index 0.918±0.033
KOI-256 B
Evolutionary stage White dwarf
Spectral type D
Apparent magnitude (Kepler) 19.45
Distance
575 ± 2 ly
(176.4 ± 0.7 pc)
Semi-amplitude
(K1)
(primary)
106.5±1.8 km/s
Details
Rotational velocity (v sin i)
19.79±0.52 km/s
KOI-256 B
Mass0.592±0.084 M
Radius0.01345±0.00091 R
Temperature7100±800 K
Other designations
KIC 11548140, 2MASS J19004443+4933553
Database references
Exoplanet Archive
data
KICdata

KOI-256 is a

Kepler spacecraft suggested the system contained a gas giant exoplanet orbiting a red dwarf, later studies determined that KOI-256 was a binary system composed of the red dwarf orbiting a white dwarf.[3][4]

Name

KOI-256

The acronym "KOI" comes from

transit method
. The "256" is the number of the object.

Characteristics

Initial observations by the Kepler spacecraft suggested a central

semi-major axis of 0.021 astronomical units.[5][6] Further studies by Muirhead et al. (2012) refined the candidate exoplanet parameters to a radius of 5.60±0.76  R🜨, a temperature of 726 K (453 °C; 847 °F), and a semi-major axis of 0.016 AU.[7]

Muirhead et al. (2013) performed additional observations with the

planetary mass object, and was more likely being influenced by a white dwarf. Using ultraviolet data from the GALEX spacecraft, it was seen that the red dwarf was significantly active, further suggesting perturbations by a white dwarf. The team re-analyzed Kepler's data, and found that when the white dwarf passed in front of the red dwarf, the red dwarf's light noticeably warped and brightened, an effect called gravitational lensing. While only being slightly larger than the Earth, the white dwarf has such large mass that the physically larger red dwarf orbits around its smaller companion.[3]

With the new observations, the red dwarf was shown to have a mass of 0.51±0.15  M, a radius of 0.540±0.014  R, and a temperature of 3,450 ± 50 K (3,180 ± 50 °C; 5,750 ± 90 °F). The white dwarf has a mass of 0.592±0.084  M, a radius of 0.01345±0.00091  R, and a temperature of 7,100 ± 800 K (6,800 ± 800 °C; 12,300 ± 1,400 °F).[2]

References