Color index

Source: Wikipedia, the free encyclopedia.
Sample calibration colors[1] [failed verification]
Class B−V U−B V−R R−I Teff (K)
O5V −0.33 −1.19 −0.15 −0.32 42,000
B0V −0.30 −1.08 −0.13 −0.29 30,000
A0V −0.02 −0.02 0.02 −0.02 9,790
F0V 0.30 0.03 0.30 0.17 7,300
G0V 0.58 0.06 0.50 0.31 5,940
K0V 0.81 0.45 0.64 0.42 5,150
M0V 1.40 1.22 1.28 0.91 3,840

In

zero point. The blue supergiant Theta Muscae has one of the lowest B−V indices at −0.41,[4] while the red giant and carbon star R Leporis has one of the largest, at +5.74.[5]

To measure the index, one observes the

UBV system). The set of passbands or filters is called a photometric system
. The difference in magnitudes found with these filters is called the U−B or B−V color index respectively.

In principle, the temperature of a star can be calculated directly from the B−V index, and there are several formulae to make this connection.[6] A good approximation can be obtained by considering stars as black bodies, using Ballesteros' formula[7] (also implemented in the PyAstronomy package for Python):[8]

Color indices of distant objects are usually affected by

color excess
, defined as the difference between the observed color index and the normal color index (or intrinsic color index), the hypothetical true color index of the star, unaffected by extinction. For example, in the UBV photometric system we can write it for the B−V color:

The

UBVRI filters, where the U, B, and V filters are as mentioned above, the R filter passes red light, and the I filter passes infrared light. This system of filters
is sometimes called the Johnson–Cousins filter system, named after the originators of the system (see references). These filters were specified as particular combinations of glass filters and photomultiplier tubes. M. S. Bessell specified a set of filter transmissions for a flat response detector, thus quantifying the calculation of the color indices.[9] For precision, appropriate pairs of filters are chosen depending on the object's color temperature: B−V are for mid-range objects, U−V for hotter objects, and R−I for cool ones.

Color indices can also be determined for other celestial bodies, such as planets and moons:

Color indices of Solar System bodies[10][11]
Celestial body B-V color index U-B color index
Mercury 0.97 0.40
Venus 0.81 0.50
Earth 0.20 0.0
Moon 0.92 0.46
Mars 1.43 0.63
Jupiter 0.87 0.48
Saturn 1.09 0.58
Uranus 0.56 0.28
Neptune 0.41 0.21

Quantitative color index terms

Quantitative color index terms[11]
Color Color index (B-V) Spectral class (main sequence) Spectral class (giant stars) Spectral class (
supergiant stars
)
Examples
Red ≥1.40 M K4-M9 K3-M9 Aldebaran, Betelgeuse, Antares
Orange 0.80-1.40 K G4-K3 G1-K2 Pollux, Arcturus
Yellow 0.60-0.80 G G0-G3 F8-G0 Sun, Capella
"Green"[a] 0.30-0.60 F F F4-7 Polaris
White 0.00-0.30 A A A0-F3 Sirius, Canopus
Blue -0.33-0.00 OB OB OB Rigel, Bellatrix

See also

Notes

  1. ^ Such stars would not be seen as green, but either as whitish or yellow.

References

  1. .
  2. ^ David F. Gray (1992), The Inferred Color Index of the Sun, Publications of the Astronomical Society of the Pacific, vol. 104, no. 681, pp. 1035–1038 (November 1992).
  3. ^ "* bet Ori". SIMBAD. Centre de données astronomiques de Strasbourg.
  4. .
  5. ^ "VizieR". webviz.u-strasbg.fr. Retrieved 2024-04-02.
  6. ^ Sekiguchi M. and Fukugita (2000). "A STUDY OF THE B-V COLOR-TEMPERATURE RELATION". AJ (Astrophysical Journal) 120 (2000) 1072. http://iopscience.iop.org/1538-3881/120/2/1072.
  7. arXiv:1201.1809
    .
  8. ^ BallesterosBV_T API http://www.hs.uni-hamburg.de/DE/Ins/Per/Czesla/PyA/PyA/index.html.
  9. ^ Michael S. Bessell (1990), UBVRI passbands, Publications of the Astronomical Society of the Pacific, vol. 102, Oct. 1990, p. 1181–1199.
  10. ^ Pace, G. (February 15, 1971), UBV: Subroutine to Compute Photometric Magnitudes of the Planets and Their Satellites (PDF) (Technical report), Jet Propulsion Laboratory
  11. ^
    ISSN 0035-8711
    .

Further reading