Kepler-42

Source: Wikipedia, the free encyclopedia.
Kepler-42

Artist's impression of the Kepler-42 (KOI-961) system
Credit: NASA
Observation data
Epoch J2000      Equinox J2000
Constellation Cygnus
Right ascension 19h 28m 52.5688s[1]
Declination 44° 37′ 08.990″[1]
Apparent magnitude (V) 16.12[2]
Characteristics
Spectral type M5V[3]
Distance
130.8 ± 0.2 ly
(40.11 ± 0.06 pc)
Details
Rotational velocity (v sin i)
2.9±0.4[3] km/s
Other designations
2MASS J19285255+4437096, KIC 8561063, LSPM J1928+4437, Gaia DR2 2126556132093765888, KOI-961
Database references
SIMBADdata
KICdata

Kepler-42, formerly known as KOI-961, is a

extrasolar planets, all of which are smaller than Earth in radius,[5] and likely also in mass.[citation needed
]

Characteristics

Kepler-42's mass is estimated to be 0.13 times that of the Sun, and a radius 0.17 times that of the Sun, just 1.7 times that of the

mas/yr.[3] Due to its small size and low temperature, the star's habitable zone
is much closer to the star than Earth is to the Sun.

Planetary system

Earth, Mars and the planets of this system compared to Kepler-20e and Kepler-20f, the first terrestrial-sized exoplanets to be discovered outside of the Solar System
The Kepler-42 system as compared to the Jovian system[note 1]

The planetary system comprising three

hot Jupiters) resemble the moon systems of giant planets such as Jupiter or Saturn more than it does the Solar System
. Despite these planets' small size and the star's being one of the faintest stars in Kepler field with confirmed planets, the detection of these planets was possible due to the small size of the star, causing these planets to block a larger proportion of starlight during their transits.

Not all of the orbital parameters of the system are known. For example, as with all transiting planets that have not had their properties established by means of other methods such as the

remains unknown.

Based on the orbits of the planets and the luminosity and effective temperature of the host star, the

Kepler-42 d would have an equilibrium temperature of about 280 K (7 °C),[7] similar to Earth's 255 K (−18 °C).[8]
Estimates for the known planets are in the tables below:

Temperature
comparisons
Kepler-42c
Kepler-42b
Kepler-42d
Earth
Global
equilibrium
temperature
728 K
455 °C
851 °F
524 K
251 °C
483.8 °F
454 K
181 °C
357.8 °F
255 K
−18 °C
−0.4 °F
References:[7][note 2]
The Kepler-42 planetary system[4][9]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
c <2.06 M🜨 0.006 0.45328731±0.00000005 0 0.73±0.03 R🜨
b <2.73 M🜨 0.0116 1.21377060+0.00000023
−0.00000025
0 0.76±0.03 R🜨
d <0.9 M🜨 0.0154 1.86511236+0.00000075
−0.00000071
0 0.67+0.04
−0.03
 R🜨

Notes

  1. ^ Orbit sizes to scale with each other, but not to the sizes of their respective host bodies
  2. ^ Temperature values for all planets assuming an albedo of 0.3, Earth's value.

References

  1. ^ .
  2. ^ "Star: KOI-961 – 3 PLANETS". Extrasolar Planets Encyclopaedia. 2012-01-12. Archived from the original on February 8, 2012. Retrieved 2012-01-12.
  3. ^
    S2CID 14889361
    .
  4. ^
  5. ^ "KOI-961: A Mini-Planetary System". NASA Ames Research Center Kepler, A Search for Habitable Planets. NASA Ames Research Center Kepler. 2012-01-11. Archived from the original on 2012-03-14. Retrieved 2012-01-11.
  6. S2CID 38317440
    .
  7. ^ a b "Planet Equilibrium Temperature". Habitable Exoplanets Catalog. Planetary Habitability Laboratory at the University of Puerto Rico. Archived from the original on 24 August 2017. Retrieved 29 February 2012.
  8. ^ "Radiating Equilibrium Temperature". University of Wisconsin Marathon County - Department of Geology/Geography. Archived from the original on 3 September 2006. Retrieved 29 February 2012.
  9. ^ "How many exoplanets has Kepler discovered?". 2015-04-09. Archived from the original on 2010-05-27.