Linearization

Source: Wikipedia, the free encyclopedia.

In

nonlinear differential equations or discrete dynamical systems.[1] This method is used in fields such as engineering, physics, economics, and ecology
.

Linearization of a function

Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function at any based on the value and slope of the function at , given that is differentiable on (or ) and that is close to . In short, linearization approximates the output of a function near .

For example, . However, what would be a good approximation of ?

For any given function , can be approximated if it is near a known differentiable point. The most basic requisite is that , where is the linearization of at . The point-slope form of an equation forms an equation of a line, given a point and slope . The general form of this equation is: .

Using the point , becomes . Because differentiable functions are

locally linear, the best slope to substitute in would be the slope of the line tangent
to at .

While the concept of local linearity applies the most to points arbitrarily close to , those relatively close work relatively well for linear approximations. The slope should be, most accurately, the slope of the tangent line at .

An approximation of f(x) = x2 at (x, f(x))

Visually, the accompanying diagram shows the tangent line of at . At , where is any small positive or negative value, is very nearly the value of the tangent line at the point .

The final equation for the linearization of a function at is:

For , . The derivative of is , and the slope of at is .

Example

To find , we can use the fact that . The linearization of at is , because the function defines the slope of the function at . Substituting in , the linearization at 4 is . In this case , so is approximately . The true value is close to 2.00024998, so the linearization approximation has a relative error of less than 1 millionth of a percent.

Linearization of a multivariable function

The equation for the linearization of a function at a point is:

The general equation for the linearization of a multivariable function at a point is:

where is the vector of variables, is the gradient, and is the linearization point of interest .[2]

Uses of linearization

Linearization makes it possible to use tools for studying

Taylor expansion
around the point of interest. For a system defined by the equation

,

the linearized system can be written as

where is the point of interest and is the -Jacobian of evaluated at .

Stability analysis

In

linearization theorem. For time-varying systems, the linearization requires additional justification.[3]

Microeconomics

In microeconomics, decision rules may be approximated under the state-space approach to linearization.[4] Under this approach, the Euler equations of the utility maximization problem are linearized around the stationary steady state.[4] A unique solution to the resulting system of dynamic equations then is found.[4]

Optimization

In

global optimum
.

Multiphysics

In

MRI scanner systems which results in a system of electromagnetic, mechanical and acoustic fields.[5]

See also

References

External links

Linearization tutorials