Ecology
habitats, from terrestrial to aquatic ecosystems . |
Part of a series on |
![]() |
---|
Ecology (from
Among other things, ecology is the study of:
- The abundance, biomass, and distribution of organisms in the context of the environment
- Life processes, interactions, and adaptations
- The movement of materials and energy through living communities
- The successional development of ecosystems
- Cooperation, competition, and predation within and between species
- Patterns of biodiversity and its effect on ecosystem processes
Ecology has practical applications in
The word ecology (German: Ökologie) was coined in 1866 by the German scientist Ernst Haeckel. The science of ecology as we know it today began with a group of American botanists in the 1890s.[1] Evolutionary concepts relating to adaptation and natural selection are cornerstones of modern ecological theory.
Ecosystems are dynamically interacting systems of organisms, the communities they make up, and the non-living (
Levels, scope, and scale of organization
The scope of ecology contains a wide array of interacting levels of organization spanning micro-level (e.g.,
The main subdisciplines of ecology,
Hierarchy
System behaviors must first be arrayed into different levels of the organization. Behaviors corresponding to higher levels occur at slow rates. Conversely, lower organizational levels exhibit rapid rates. For example, individual tree leaves respond rapidly to momentary changes in light intensity, CO2 concentration, and the like. The growth of the tree responds more slowly and integrates these short-term changes.
O'Neill et al. (1986)[7]: 76
The scale of ecological dynamics can operate like a closed system, such as aphids migrating on a single tree, while at the same time remaining open with regard to broader scale influences, such as atmosphere or climate. Hence, ecologists classify
To structure the study of ecology into a conceptually manageable framework, the biological world is organized into a
Biodiversity
Biodiversity refers to the variety of life and its processes. It includes the variety of living organisms, the genetic differences among them, the communities and ecosystems in which they occur, and the ecological and evolutionary processes that keep them functioning, yet ever-changing and adapting.
Noss & Carpenter (1994)[11]: 5
Biodiversity (an abbreviation of "biological diversity") describes the diversity of life from genes to ecosystems and spans every level of biological organization. The term has several interpretations, and there are many ways to index, measure, characterize, and represent its complex organization.
Habitat

The habitat of a species describes the environment over which a species is known to occur and the type of community that is formed as a result.
Niche
Definitions of the niche date back to 1917,
Niche construction
Organisms are subject to environmental pressures, but they also modify their habitats. The
The ecosystem engineering concept has stimulated a new appreciation for the influence that organisms have on the ecosystem and evolutionary process. The term "niche construction" is more often used in reference to the under-appreciated feedback mechanisms of natural selection imparting forces on the abiotic niche.
Biome
Biomes are larger units of organization that categorize regions of the Earth's ecosystems, mainly according to the structure and composition of vegetation.
Biosphere
The largest scale of ecological organization is the biosphere: the total sum of ecosystems on the planet.
Population ecology
Population ecology studies the dynamics of species populations and how these populations interact with the wider environment.[5] A population consists of individuals of the same species that live, interact, and migrate through the same niche and habitat.[49]
A primary law of population ecology is the Malthusian growth model[50] which states, "a population will grow (or decline) exponentially as long as the environment experienced by all individuals in the population remains constant."[50]: 18 Simplified population models usually starts with four variables: death, birth, immigration, and emigration.
An example of an introductory population model describes a closed population, such as on an island, where immigration and emigration does not take place. Hypotheses are evaluated with reference to a null hypothesis which states that
where N is the total number of individuals in the population, b and d are the per capita rates of birth and death respectively, and r is the per capita rate of population change.[50][51]
Using these modeling techniques, Malthus' population principle of growth was later transformed into a model known as the
where N(t) is the number of individuals measured as biomass density as a function of time, t, r is the maximum per-capita rate of change commonly known as the intrinsic rate of growth, and is the crowding coefficient, which represents the reduction in population growth rate per individual added. The formula states that the rate of change in population size () will grow to approach equilibrium, where (), when the rates of increase and crowding are balanced, . A common, analogous model fixes the equilibrium, as K, which is known as the "carrying capacity."
Population ecology builds upon these introductory models to further understand demographic processes in real study populations. Commonly used types of data include life history, fecundity, and survivorship, and these are analyzed using mathematical techniques such as matrix algebra. The information is used for managing wildlife stocks and setting harvest quotas.[51][52] In cases where basic models are insufficient, ecologists may adopt different kinds of statistical methods, such as the Akaike information criterion,[53] or use models that can become mathematically complex as "several competing hypotheses are simultaneously confronted with the data."[54]
Metapopulations and migration
The concept of metapopulations was defined in 1969[55] as "a population of populations which go extinct locally and recolonize".[56]: 105 Metapopulation ecology is another statistical approach that is often used in conservation research.[57] Metapopulation models simplify the landscape into patches of varying levels of quality,[58] and metapopulations are linked by the migratory behaviours of organisms. Animal migration is set apart from other kinds of movement because it involves the seasonal departure and return of individuals from a habitat.[59] Migration is also a population-level phenomenon, as with the migration routes followed by plants as they occupied northern post-glacial environments. Plant ecologists use pollen records that accumulate and stratify in wetlands to reconstruct the timing of plant migration and dispersal relative to historic and contemporary climates. These migration routes involved an expansion of the range as plant populations expanded from one area to another. There is a larger taxonomy of movement, such as commuting, foraging, territorial behavior, stasis, and ranging. Dispersal is usually distinguished from migration because it involves the one-way permanent movement of individuals from their birth population into another population.[60][61]
In metapopulation terminology, migrating individuals are classed as emigrants (when they leave a region) or immigrants (when they enter a region), and sites are classed either as sources or sinks. A site is a generic term that refers to places where ecologists sample populations, such as ponds or defined sampling areas in a forest. Source patches are productive sites that generate a seasonal supply of
Community ecology
Community ecology examines how interactions among species and their environment affect the abundance, distribution and diversity of species within communities.
Johnson & Stinchcomb (2007)[64]: 250
Community ecology is the study of the interactions among a collection of species that inhabit the same geographic area. Community ecologists study the determinants of patterns and processes for two or more interacting species. Research in community ecology might measure species diversity in grasslands in relation to soil fertility. It might also include the analysis of predator-prey dynamics, competition among similar plant species, or mutualistic interactions between crabs and corals.
Ecosystem ecology
These ecosystems, as we may call them, are of the most various kinds and sizes. They form one category of the multitudinous physical systems of the universe, which range from the universe as a whole down to the atom.
Tansley (1935)[65]: 299

Ecosystems may be habitats within biomes that form an integrated whole and a dynamically responsive system having both physical and biological complexes. Ecosystem ecology is the science of determining the fluxes of materials (e.g. carbon, phosphorus) between different pools (e.g., tree biomass, soil organic material). Ecosystem ecologists attempt to determine the underlying causes of these fluxes. Research in ecosystem ecology might measure
The underlying concept of an ecosystem can be traced back to 1864 in the published work of
Food webs

A food web is the archetypal
Food webs are often limited relative to the real world. Complete empirical measurements are generally restricted to a specific habitat, such as a cave or a pond, and principles gleaned from food web microcosm studies are extrapolated to larger systems.[72] Feeding relations require extensive investigations into the gut contents of organisms, which can be difficult to decipher, or stable isotopes can be used to trace the flow of nutrient diets and energy through a food web.[73] Despite these limitations, food webs remain a valuable tool in understanding community ecosystems.[74]
Food webs exhibit principles of ecological emergence through the nature of trophic relationships: some species have many weak feeding links (e.g.,
Trophic levels
A trophic level (from Greek troph, τροφή, trophē, meaning "food" or "feeding") is "a group of organisms acquiring a considerable majority of its energy from the lower adjacent level (according to
Species are broadly categorized as
Trophic levels are part of the
Keystone species

A keystone species is a species that is connected to a disproportionately large number of other species in the
Complexity
Complexity is understood as a large computational effort needed to piece together numerous interacting parts exceeding the iterative memory capacity of the human mind. Global patterns of biological diversity are complex. This
"Complexity in ecology is of at least six distinct types: spatial, temporal, structural, process, behavioral, and geometric."[99]: 3 From these principles, ecologists have identified emergent and self-organizing phenomena that operate at different environmental scales of influence, ranging from molecular to planetary, and these require different explanations at each integrative level.[48][100] Ecological complexity relates to the dynamic resilience of ecosystems that transition to multiple shifting steady-states directed by random fluctuations of history.[9][101] Long-term ecological studies provide important track records to better understand the complexity and resilience of ecosystems over longer temporal and broader spatial scales. These studies are managed by the International Long Term Ecological Network (LTER).[102] The longest experiment in existence is the Park Grass Experiment, which was initiated in 1856.[103] Another example is the Hubbard Brook study, which has been in operation since 1960.[104]
Holism
Holism remains a critical part of the theoretical foundation in contemporary ecological studies. Holism addresses the biological organization of life that self-organizes into layers of emergent whole systems that function according to non-reducible properties. This means that higher-order patterns of a whole functional system, such as an ecosystem, cannot be predicted or understood by a simple summation of the parts.[105] "New properties emerge because the components interact, not because the basic nature of the components is changed."[5]: 8
Ecological studies are necessarily holistic as opposed to
Relation to evolution
Ecology and evolutionary biology are considered sister disciplines of the life sciences.
Behavioural ecology
All organisms can exhibit behaviours. Even plants express complex behaviour, including memory and communication.
Adaptation is the central unifying concept in behavioural ecology.[120] Behaviours can be recorded as traits and inherited in much the same way that eye and hair colour can. Behaviours can evolve by means of natural selection as adaptive traits conferring functional utilities that increases reproductive fitness.[121][122]

Predator-prey interactions are an introductory concept into food-web studies as well as behavioural ecology.
Elaborate sexual
Cognitive ecology
Cognitive ecology integrates theory and observations from
Social ecology
Social-ecological behaviours are notable in the
Coevolution
Ecological interactions can be classified broadly into a
Indirect mutualisms occur where the organisms live apart. For example, trees living in the equatorial regions of the planet supply oxygen into the atmosphere that sustains species living in distant polar regions of the planet. This relationship is called
Biogeography
Biogeography (an amalgamation of biology and geography) is the comparative study of the geographic distribution of organisms and the corresponding evolution of their traits in space and time.
Biogeography has a long history in the natural sciences concerning the spatial distribution of plants and animals. Ecology and evolution provide the explanatory context for biogeographical studies.
r/K selection theory
A population ecology concept is r/K selection theory,
In the r/K-selection model, the first variable r is the intrinsic rate of natural increase in population size and the second variable K is the carrying capacity of a population.[33] Different species evolve different life-history strategies spanning a continuum between these two selective forces. An r-selected species is one that has high birth rates, low levels of parental investment, and high rates of mortality before individuals reach maturity. Evolution favours high rates of fecundity in r-selected species. Many kinds of insects and invasive species exhibit r-selected characteristics. In contrast, a K-selected species has low rates of fecundity, high levels of parental investment in the young, and low rates of mortality as individuals mature. Humans and elephants are examples of species exhibiting K-selected characteristics, including longevity and efficiency in the conversion of more resources into fewer offspring.[146][152]
Molecular ecology
The important relationship between ecology and genetic inheritance predates modern techniques for molecular analysis. Molecular ecological research became more feasible with the development of rapid and accessible genetic technologies, such as the
Human ecology
The history of life on Earth has been a history of interaction between living things and their surroundings. To a large extent, the physical form and the habits of the earth's vegetation and its animal life have been molded by the environment. Considering the whole span of earthly time, the opposite effect, in which life actually modifies its surroundings, has been relatively slight. Only within the moment of time represented by the present century has one species man acquired significant power to alter the nature of his world.
Rachel Carson, "Silent Spring"[157]
Ecology is as much a biological science as it is a human science.
The ecological complexities human beings are facing through the technological transformation of the planetary biome has brought on the
Ecosystem management is not just about science nor is it simply an extension of traditional resource management; it offers a fundamental reframing of how humans may work with nature.
Grumbine (1994)[163]: 27
Ecology is an employed science of restoration, repairing disturbed sites through human intervention, in natural resource management, and in environmental impact assessments. Edward O. Wilson predicted in 1992 that the 21st century "will be the era of restoration in ecology".[164] Ecological science has boomed in the industrial investment of restoring ecosystems and their processes in abandoned sites after disturbance. Natural resource managers, in forestry, for example, employ ecologists to develop, adapt, and implement ecosystem based methods into the planning, operation, and restoration phases of land-use. Another example of conservation is seen on the east coast of the United States in Boston, MA. The city of Boston implemented the Wetland Ordinance,[165] improving the stability of their wetland environments by implementing soil amendments that will improve groundwater storage and flow, and trimming or removal of vegetation that could cause harm to water quality.[citation needed] Ecological science is used in the methods of sustainable harvesting, disease, and fire outbreak management, in fisheries stock management, for integrating land-use with protected areas and communities, and conservation in complex geo-political landscapes.[22][163][166][167]
Relation to the environment
The environment of ecosystems includes both physical parameters and biotic attributes. It is dynamically interlinked and contains
The distinction between external and internal environments, however, is an abstraction parsing life and environment into units or facts that are inseparable in reality. There is an interpenetration of cause and effect between the environment and life. The laws of
Disturbance and resilience
Ecosystems are regularly confronted with natural environmental variations and disturbances over time and geographic space. A disturbance is any process that removes biomass from a community, such as a fire, flood, drought, or predation.[172] Disturbances occur over vastly different ranges in terms of magnitudes as well as distances and time periods,[173] and are both the cause and product of natural fluctuations in death rates, species assemblages, and biomass densities within an ecological community. These disturbances create places of renewal where new directions emerge from the patchwork of natural experimentation and opportunity.[172][174][175] Ecological resilience is a cornerstone theory in ecosystem management. Biodiversity fuels the resilience of ecosystems acting as a kind of regenerative insurance.[175]
Metabolism and the early atmosphere
Metabolism – the rate at which energy and material resources are taken up from the environment, transformed within an organism, and allocated to maintenance, growth and reproduction – is a fundamental physiological trait.
Ernest et al.[176]: 991
The Earth was formed approximately 4.5 billion years ago.[177] As it cooled and a crust and oceans formed, its atmosphere transformed from being dominated by hydrogen to one composed mostly of methane and ammonia. Over the next billion years, the metabolic activity of life transformed the atmosphere into a mixture of carbon dioxide, nitrogen, and water vapor. These gases changed the way that light from the sun hit the Earth's surface and greenhouse effects trapped heat. There were untapped sources of free energy within the mixture of reducing and oxidizing gasses that set the stage for primitive ecosystems to evolve and, in turn, the atmosphere also evolved.[178]

Throughout history, the Earth's atmosphere and
Radiation: heat, temperature and light
The biology of life operates within a certain range of temperatures. Heat is a form of energy that regulates temperature. Heat affects growth rates, activity, behaviour, and
There is a relationship between light, primary production, and ecological
Physical environments
Water
Wetland conditions such as shallow water, high plant productivity, and anaerobic substrates provide a suitable environment for important physical, biological, and chemical processes. Because of these processes, wetlands play a vital role in global nutrient and element cycles.
Cronk & Fennessy (2001)[181]: 29
Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming
Gravity
The shape and energy of the land are significantly affected by gravitational forces. On a large scale, the distribution of gravitational forces on the earth is uneven and influences the shape and movement of
Pressure
Climatic and
Wind and turbulence

Fire

Plants convert carbon dioxide into biomass and emit oxygen into the atmosphere. By approximately 350 million years ago (the end of the
Soils
Soil is the living top layer of mineral and organic dirt that covers the surface of the planet. It is the chief organizing centre of most ecosystem functions, and it is of critical importance in agricultural science and ecology. The
Biogeochemistry and climate
Ecologists study and measure nutrient budgets to understand how these materials are regulated, flow, and
The ecology of global carbon budgets gives one example of the linkage between biodiversity and biogeochemistry. It is estimated that the Earth's oceans hold 40,000 gigatonnes (Gt) of carbon, that vegetation and soil hold 2070 Gt, and that fossil fuel emissions are 6.3 Gt carbon per year.
In the Oligocene, from twenty-five to thirty-two million years ago, there was another significant restructuring of the global carbon cycle as grasses evolved a new mechanism of photosynthesis, C4 photosynthesis, and expanded their ranges. This new pathway evolved in response to the drop in atmospheric CO2 concentrations below 550 ppm.[218] The relative abundance and distribution of biodiversity alters the dynamics between organisms and their environment such that ecosystems can be both cause and effect in relation to climate change. Human-driven modifications to the planet's ecosystems (e.g., disturbance, biodiversity loss, agriculture) contributes to rising atmospheric greenhouse gas levels. Transformation of the global carbon cycle in the next century is projected to raise planetary temperatures, lead to more extreme fluctuations in weather, alter species distributions, and increase extinction rates. The effect of global warming is already being registered in melting glaciers, melting mountain ice caps, and rising sea levels. Consequently, species distributions are changing along waterfronts and in continental areas where migration patterns and breeding grounds are tracking the prevailing shifts in climate. Large sections of permafrost are also melting to create a new mosaic of flooded areas having increased rates of soil decomposition activity that raises methane (CH4) emissions. There is concern over increases in atmospheric methane in the context of the global carbon cycle, because methane is a greenhouse gas that is 23 times more effective at absorbing long-wave radiation than CO2 on a 100-year time scale.[219] Hence, there is a relationship between global warming, decomposition and respiration in soils and wetlands producing significant climate feedbacks and globally altered biogeochemical cycles.[105][220][221][222][223][224]
History
Early beginnings
By ecology, we mean the whole science of the relations of the organism to the environment including, in the broad sense, all the "conditions of existence". Thus, the theory of evolution explains the housekeeping relations of organisms mechanistically as the necessary consequences of effectual causes; and so forms the monistic groundwork of ecology.
Ecology has a complex origin, due in large part to its interdisciplinary nature.[226] Ancient Greek philosophers such as Hippocrates and Aristotle were among the first to record observations on natural history. However, they viewed life in terms of essentialism, where species were conceptualized as static unchanging things while varieties were seen as aberrations of an idealized type. This contrasts against the modern understanding of ecological theory where varieties are viewed as the real phenomena of interest and having a role in the origins of adaptations by means of natural selection.[5][227][228] Early conceptions of ecology, such as a balance and regulation in nature can be traced to Herodotus (died c. 425 BC), who described one of the earliest accounts of mutualism in his observation of "natural dentistry". Basking Nile crocodiles, he noted, would open their mouths to give sandpipers safe access to pluck leeches out, giving nutrition to the sandpiper and oral hygiene for the crocodile.[226] Aristotle was an early influence on the philosophical development of ecology. He and his student Theophrastus made extensive observations on plant and animal migrations, biogeography, physiology, and their behavior, giving an early analogue to the modern concept of an ecological niche.[229][230]
Nowhere can one see more clearly illustrated what may be called the sensibility of such an organic complex, – expressed by the fact that whatever affects any species belonging to it, must speedily have its influence of some sort upon the whole assemblage. He will thus be made to see the impossibility of studying any form completely, out of relation to the other forms, – the necessity for taking a comprehensive survey of the whole as a condition to a satisfactory understanding of any part.
Stephen Forbes (1887)[231]

Ecological concepts such as food chains, population regulation, and productivity were first developed in the 1700s, through the published works of microscopist
Opinions differ on who was the founder of modern ecological theory. Some mark Haeckel's definition as the beginning;
From Aristotle until Darwin, the natural world was predominantly considered static and unchanging. Prior to The Origin of Species, there was little appreciation or understanding of the dynamic and reciprocal relations between organisms, their adaptations, and the environment.[227] An exception is the 1789 publication Natural History of Selborne by Gilbert White (1720–1793), considered by some to be one of the earliest texts on ecology.[244] While Charles Darwin is mainly noted for his treatise on evolution,[245] he was one of the founders of soil ecology,[246] and he made note of the first ecological experiment in The Origin of Species.[242] Evolutionary theory changed the way that researchers approached the ecological sciences.[247]
Since 1900
Modern ecology is a young science that first attracted substantial scientific attention toward the end of the 19th century (around the same time that evolutionary studies were gaining scientific interest). The scientist
In the early 20th century, ecology transitioned from a more
The Clementsian superorganism theory was an overextended application of an idealistic form of holism.[36][107] The term "holism" was coined in 1926 by Jan Christiaan Smuts, a South African general and polarizing historical figure who was inspired by Clements' superorganism concept.[252][C] Around the same time, Charles Elton pioneered the concept of food chains in his classical book Animal Ecology.[82] Elton[82] defined ecological relations using concepts of food chains, food cycles, and food size, and described numerical relations among different functional groups and their relative abundance. Elton's 'food cycle' was replaced by 'food web' in a subsequent ecological text.[253] Alfred J. Lotka brought in many theoretical concepts applying thermodynamic principles to ecology.
In 1942,
This whole chain of poisoning, then, seems to rest on a base of minute plants which must have been the original concentrators. But what of the opposite end of the food chain—the human being who, in probable ignorance of all this sequence of events, has rigged his fishing tackle, caught a string of fish from the waters of Clear Lake, and taken them home to fry for his supper?
Rachel Carson (1962)[258]: 48
Ecology surged in popular and scientific interest during the 1960–1970s environmental movement. There are strong historical and scientific ties between ecology, environmental management, and protection.[235] The historical emphasis and poetic naturalistic writings advocating the protection of wild places by notable ecologists in the history of conservation biology, such as Aldo Leopold and Arthur Tansley, have been seen as far removed from urban centres where, it is claimed, the concentration of pollution and environmental degradation is located.[235][259] Palamar (2008)[259] notes an overshadowing by mainstream environmentalism of pioneering women in the early 1900s who fought for urban health ecology (then called euthenics)[248] and brought about changes in environmental legislation. Women such as Ellen Swallow Richards and Julia Lathrop, among others, were precursors to the more popularized environmental movements after the 1950s.
In 1962, marine biologist and ecologist Rachel Carson's book Silent Spring helped to mobilize the environmental movement by alerting the public to toxic pesticides, such as DDT, bioaccumulating in the environment. Carson used ecological science to link the release of environmental toxins to human and ecosystem health. Since then, ecologists have worked to bridge their understanding of the degradation of the planet's ecosystems with environmental politics, law, restoration, and natural resources management.[22][235][259][260]
See also
- Carrying capacity
- Chemical ecology
- Climate justice
- Circles of Sustainability
- Cultural ecology
- Dialectical naturalism
- Ecological death
- Ecological psychology
- Ecology movement
- Ecosophy
- Ecopsychology
- Human ecology
- Industrial ecology
- Information ecology
- Landscape ecology
- Natural resource
- Normative science
- Philosophy of ecology
- Political ecology
- Theoretical ecology
- Sensory ecology
- Sexecology
- Spiritual ecology
- Sustainable development
- Lists
Notes
- romanized: khōrā, lit.'χωρα', meaning "dwelling place, distributional area" —quoted from Stauffer (1957).