The Jacobian can be understood by considering a unit area in the new coordinate space; and examining how that unit area transforms when mapped into xy coordinate space in which the integral is visually understood.[5][6][7] The process involves taking partial derivatives with respect to the new coordinates, then applying the determinant and hence obtaining the Jacobian.
Definition
Suppose f : Rn → Rm is a function such that each of its first-order partial derivatives exists on Rn. This function takes a point x ∈ Rn as input and produces the vector f(x) ∈ Rm as output. Then the Jacobian matrix of f, denoted Jf ∈ Rm×n, is defined such that its (i,j)th entry is , or explicitly
where is the transpose (row vector) of the gradient of the -th component.
The Jacobian matrix, whose entries are functions of x, is denoted in various ways; other common notations include Df, , and .[8][9] Some authors define the Jacobian as the transpose of the form given above.
The Jacobian matrix
neighborhood of x, if f(x) is differentiable at x.[a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear maph → J(x) ⋅ h is known as the derivative or the differential
of f at x.
When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the Jacobian determinant of f. It carries important information about the local behavior of f. In particular, the function f has a differentiable inverse function in a neighborhood of a point x if and only if the Jacobian determinant is nonzero at x (see inverse function theorem for an explanation of this and Jacobian conjecture for a related problem of global invertibility). The Jacobian determinant also appears when changing the variables in multiple integrals (see substitution rule for multiple variables).
When m = 1, that is when f : Rn → R is a
row vector
; this row vector of all first-order partial derivatives of f is the transpose of the gradient of f, i.e.
. Specializing further, when m = n = 1, that is when f : R → R is a scalar-valued function of a single variable, the Jacobian matrix has a single entry; this entry is the derivative of the function f.
The Jacobian of a vector-valued function in several variables generalizes the
function in several variables
is (the transpose of) its gradient and the gradient of a scalar-valued function of a single variable is its derivative.
At each point where a function is differentiable, its Jacobian matrix can also be thought of as describing the amount of "stretching", "rotating" or "transforming" that the function imposes locally near that point. For example, if (x′, y′) = f(x, y) is used to smoothly transform an image, the Jacobian matrix Jf(x, y), describes how the image in the neighborhood of (x, y) is transformed.
If a function is differentiable at a point, its differential is given in coordinates by the Jacobian matrix. However, a function does not need to be differentiable for its Jacobian matrix to be defined, since only its first-order partial derivatives are required to exist.
In this sense, the Jacobian may be regarded as a kind of "first-order derivative" of a vector-valued function of several variables. In particular, this means that the gradient of a scalar-valued function of several variables may too be regarded as its "first-order derivative".
Composable differentiable functions f : Rn → Rm and g : Rm → Rk satisfy the chain rule, namely for x in Rn.
The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix, which in a sense is the "second derivative" of the function in question.
Jacobian determinant
A nonlinear map sends a small square (left, in red) to a distorted parallelogram (right, in red). The Jacobian at a point gives the best linear approximation of the distorted parallelogram near that point (right, in translucent white), and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square.
If m = n, then f is a function from Rn to itself and the Jacobian matrix is a square matrix. We can then form its determinant, known as the Jacobian determinant. The Jacobian determinant is sometimes simply referred to as "the Jacobian".
The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the
substitution rule
.
The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To accommodate for the change of coordinates the magnitude of the Jacobian determinant arises as a multiplicative factor within the integral. This is because the n-dimensional dV element is in general a parallelepiped in the new coordinate system, and the n-volume of a parallelepiped is the determinant of its edge vectors.
The Jacobian can also be used to determine the stability of
by approximating behavior near an equilibrium point.
Inverse
According to the
invertible function
f : Rn → Rn is the Jacobian matrix of the inverse function. That is, the Jacobian matrix of the inverse function at a point p is
and the Jacobian determinant is
If the Jacobian is continuous and nonsingular at the point p in Rn, then f is invertible when restricted to some neighbourhood of p. In other words, if the Jacobian determinant is not zero at a point, then the function is locally invertible near this point.
The (unproved) Jacobian conjecture is related to global invertibility in the case of a polynomial function, that is a function defined by npolynomials in n variables. It asserts that, if the Jacobian determinant is a non-zero constant (or, equivalently, that it does not have any complex zero), then the function is invertible and its inverse is a polynomial function.
. Unlike rectangular differential volume element's volume, this differential volume element's volume is not a constant, and varies with coordinates (ρ and φ). It can be used to transform integrals between the two coordinate systems:
Example 4
The Jacobian matrix of the function F : R3 → R4 with components
is
This example shows that the Jacobian matrix need not be a square matrix.
Example 5
The Jacobian determinant of the function F : R3 → R3 with components
is
From this we see that F reverses orientation near those points where x1 and x2 have the same sign; the function is
locally
invertible everywhere except near points where x1 = 0 or x2 = 0. Intuitively, if one starts with a tiny object around the point (1, 2, 3) and apply F to that object, one will get a resulting object with approximately 40 × 1 × 2 = 80 times the volume of the original one, with orientation reversed.
Other uses
Dynamical systems
Consider a dynamical system of the form , where is the (component-wise) derivative of with respect to the
evolution parameter
(time), and is differentiable. If , then is a
eigenvalues
of , the Jacobian of at the stationary point.[11] Specifically, if the eigenvalues all have real parts that are negative, then the system is stable near the stationary point. If any eigenvalue has a real part that is positive, then the point is unstable. If the largest real part of the eigenvalues is zero, the Jacobian matrix does not allow for an evaluation of the stability.[12]
Newton's method
A square system of coupled nonlinear equations can be solved iteratively by Newton's method. This method uses the Jacobian matrix of the system of equations.
^W., Weisstein, Eric. "Jacobian". mathworld.wolfram.com. Archived from the original on 3 November 2017. Retrieved 2 May 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)