Micropipe

Source: Wikipedia, the free encyclopedia.

A micropipe, also called a micropore, microtube, capillary defect or pinhole defect, is a

integrated circuits
made from that wafer.

Micropipes are also relevant to makers of

dislocations, within the atomic lattice
.

A

crystal lattice into the shape of a helix
. Once a screw dislocation propagates through the bulk of a sample during the wafer growth process, a micropipe is formed.

Micropipes and screw dislocations in epitaxial layers are normally derived from the substrates on which the epitaxy is performed. Micropipes are considered to be empty-core screw dislocations with large strain energy (i.e. they have large Burgers vector); they follow the growth direction (c-axis) in silicon carbide boules and substrates propagating into the deposited epitaxial layers.

Factors which influence formation of micropipes (and other defects) are such growth parameters as temperature, supersaturation, vapor phase stoichiometry, impurities and the polarity of the seed crystal surface.

References

United States Patent 7,201,799, V Velidandla, KLA-Tencor Technologies Corporation (Milpitas, CA), April 10, 2007, System and method for classifying, detecting, and counting micropipes.

Performance Limiting Micropipe Defects in Silicon Carbide Wafers by Philip G. Neudeck and J. Anthony Powell of NASA Lewis Research Center.

Cree Demonstrates 100-mm Zero-Micropipe Silicon Carbide Substrates.