Mucociliary clearance
Mucociliary clearance | |
---|---|
![]() Ciliated epithelium in bronchus with short microvilli on non-ciliated cells | |
Details | |
System | Respiratory system |
Identifiers | |
MeSH | D009079 |
Anatomical terminology |
Mucociliary clearance (MCC), mucociliary transport, or the mucociliary escalator describes the self-clearing mechanism of the
MCC effectiveness relies on the correct properties of the
Any disturbance in the closely regulated functioning of the cilia can cause a disease. Disturbances in the structural formation of the cilia can cause a number of ciliopathies, notably primary ciliary dyskinesia.[5] Cigarette smoke exposure can cause shortening of the cilia.[6]
Function
In the upper part of the respiratory tract, the nasal hair in the nostrils traps large particles, and the sneeze reflex may also be triggered to expel them. The nasal mucosa also traps particles preventing their entry further into the tract. In the rest of the respiratory tract, particles of different sizes become deposited along different parts of the airways. Larger particles are trapped higher up in the larger bronchi. As the airways become narrower only smaller particles can pass. The branchings of the airways cause turbulence in the airflow at all of their junctions where particles can then be deposited and they never reach the alveoli. Only very small pathogens are able to gain entry to the alveoli. Mucociliary clearance functions to remove these particulates and also to trap and remove pathogens from the airways, in order to protect the delicate lung parenchyma, and also to provide protection and moisture to the airways.[2]
Mucociliary clearance also takes part in pulmonary elimination, which with

Components
In the
The
Mechanism
Within the thin periciliary liquid layer the cilia beat in a coordinated fashion directed to the pharynx where the transported mucus is either swallowed or coughed up. This movement towards the pharynx is either upward from the lower respiratory tract or downwards from the nasal structures clearing the mucus that is constantly produced.[8]
Each cilium is about 7 μm in length,[13] and is fixed at its base. Its beat has two parts: the power stroke, or effector stroke, and the recovery stroke.[14][15] The movement of the cilia takes place in the periciliary liquid which is a little shorter in depth than the height of an extended cilium. This allows the cilia to penetrate the mucous layer during its full extension in the effector stroke, and to propel the mucus directionally, away from the cell surface.[14][16] In the recovery stroke the cilium bends from one end to the other bringing it back to the starting point for the next power stroke.[16] The returning cilia bend to immerse completely in the PCL which has the effect of reducing a reverse movement of mucus.[14]

The coordinated movement of the cilia on all the cells is carried out in a fashion that is not clear. This produces wave-like motions that in the trachea, move at a speed of between 6 and 20 mm per minute.[2] The wave produced is a metachronal wave that moves the mucus.[5] Many mathematical models have been developed in order to study the mechanisms of ciliary beating. These include models to understand the generation and rhythm of the metachronal wave, and the generation of the force in the effective stroke of the cilium.[14]
Clinical significance

Effective mucociliary clearance depends on a number of factors including the numbers of cilia, and their structure particularly their height, and the quality of the mucus produced that needs to be maintained at a correct humidity, temperature, and acidity.
The cilia need to be able to move freely in the periciliary liquid layer and when this is impaired through damage to the cilia or by imbalances in the moisture or pH of the PCL, the mucus is unable to be cleared properly from the airways. Cystic fibrosis is a consequence of imbalances in the PCL.[9] Accumulated mucus, apart from causing varying degrees of airflow obstruction, makes a breeding ground for bacteria that cause many respiratory infections that can seriously worsen existing lung disorders. Obstructive lung diseases often result from impaired mucociliary clearance that can be associated with mucus hypersecretion and these are sometimes referred to as mucoobstructive lung diseases.[12] Studies have shown that the dehydration of airway surface liquid is enough to produce mucus obstruction even when there is no evidence of mucus hypersecretion.[17]
Humidity
High humidity enhances mucociliary clearance. One study in dogs found that mucus transport was lower at an absolute humidity of 9 g water/m3 than at 30 g water/m3.[18] Two methods of supporting this, particularly in mechanical ventilation, are provided by active and passive respiratory gas humidifiers.
See also
References
- S2CID 9551913.
- ^ ISBN 9780323523714.
- PMID 12430955.
- PMID 26068443.
- ^ PMID 29800551.
- PMID 29849481.
- ^ "Pulmonary elimination". mesh.nlm.nih.gov. Retrieved 26 September 2019.
- ^ ISBN 9781416045748.
- ^ PMID 21427214.
- PMID 26068443.
- PMID 26185361.
- ^ PMID 31396541.
- PMID 21121836.
- ^ PMID 31323757.
- PMID 30464007.
- ^ ISBN 978-0-7637-3905-8. Retrieved 28 August 2019.
- PMID 27115954.)
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link - PMID 29988934.