PIKFYVE

Source: Wikipedia, the free encyclopedia.
PIKFYVE
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001002881
NM_001178000
NM_015040
NM_152671

NM_011086
NM_001310624

RefSeq (protein)

NP_001171471
NP_055855
NP_689884

NP_001297553
NP_035216

Location (UCSC)Chr 2: 208.27 – 208.36 MbChr 1: 65.23 – 65.32 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

PIKfyve, a

FYVE finger-containing phosphoinositide kinase, is an enzyme that in humans is encoded by the PIKFYVE gene.[5][6]

Function

The principal enzymatic activity of PIKfyve is to phosphorylate PtdIns3P to PtdIns(3,5)P2. PIKfyve activity is responsible for the production of both PtdIns(3,5)P2 and phosphatidylinositol 5-phosphate (PtdIns5P).[7][8][9][10] PIKfyve is a large protein, containing a number of functional domains and expressed in several spliced forms. The reported full-length mouse and human cDNA clones encode proteins of 2052 and 2098 amino acid residues, respectively.[6][11][8][12] By directly binding membrane PtdIns(3)P,[13] the FYVE finger domain of PIKfyve is essential in localizing the protein to the cytosolic leaflet of endosomes.[6][13] Impaired PIKfyve enzymatic activity by dominant-interfering mutants, siRNA- mediated ablation or pharmacological inhibition causes lysosome enlargement and cytoplasmic vacuolation due to impaired PtdIns(3,5)P2 synthesis and impaired lysosome fission process and homeostasis.[14] Thus, via PtdIns(3,5)P2 production, PIKfyve participates in several aspects of vesicular dynamics,[15][16] thereby affecting a number of trafficking pathways that emanate from or traverse the endosomal system en route to the trans-Golgi network or later compartments along the endocytic pathway.[17][18][19][20][21][22]

Medical significance

PIKfyve mutations affecting one of the two PIKFYVE alleles are found in 8 out of 10 families with Francois-Neetens

adiposity, i.e. symptoms, typical for human prediabetes.[29]

PIKfyve inhibitors as potential therapeutics in Cancer

Several small molecule PIKfyve inhibitors have shown promise as cancer therapeutics in preclinical studies due to selective toxicity in non-Hodgkin lymphoma B cells [30] or in U-251 glioblastoma cells. [31] PIKfyve inhibitors cause cell death also in A-375 melanoma cells, which depend on autophagy for growth and proliferation, due to impaired lysosome homeostasis. [32] The potential therapeutic use of PIKfyve inhibitors awaits clinical trials.

Interactions

PIKfyve physically associates with its regulator ArPIKfyve, a protein encoded by the human gene

SPAG9.[18][22] These interactions link PIKfyve to microtubule-based endosome to trans-Golgi network traffic. Under sustained activation of glutamate receptors PIKfyve binds to and facilitates the lysosomal degradation of Cav1.2, voltage-dependent calcium channel type 1.2, thereby protecting the neurons from excitotoxicity.[35] PIKfyve negatively regulates Ca2+-dependent exocytosis in neuroendocrine cells without affecting voltage-gated calcium channels.[36]

Evolutionary biology

PIKFYVE belongs to a large family of evolutionarily-conserved lipid kinases. Single copy genes, encoding similarly-structured FYVE-domain–containing phosphoinositide kinases exist in most genomes from yeast to man. The plant

M. musculus leads to embryonic lethality indicating that the FYVE-domain–containing phosphoinositide kinases have become essential in embryonic development of multicellular organisms.[24][41][42][43]
Thus, in evolution, the FYVE-domain-containing phosphoinositide kinases retain several aspects of the structural organization, enzyme activity and protein interactions from budding yeast. In higher eukaryotes, the enzymes acquire one additional domain, a role in the production of PtdIns5P, a new set of interacting proteins and become essential in embryonic development.

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000115020Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025949Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: Phosphoinositide kinase, FYVE finger containing".
  6. ^
    PMID 9858586
    .
  7. .
  8. ^ .
  9. .
  10. .
  11. .
  12. .
  13. ^ .
  14. .
  15. .
  16. ^ .
  17. .
  18. ^ .
  19. .
  20. ^ .
  21. .
  22. ^ .
  23. .
  24. ^ .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .

Further reading