Phenylhydroxylamine

Source: Wikipedia, the free encyclopedia.
Phenylhydroxylamine
Skeletal formula of phenylhydroxylamine
Ball-and-stick model of the phenylhydroxylamine molecule
Names
Preferred IUPAC name
N-Hydroxyaniline
Other names
beta-phenylhydroxylamine; phenylhydroxylamine; N-hydroxybenzeneamine; hydroxylaminobenzene
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
ECHA InfoCard
100.002.614 Edit this at Wikidata
EC Number
  • 209-711-2
KEGG
UNII
  • InChI=1S/C6H7NO/c8-7-6-4-2-1-3-5-6/h1-5,7-8H ☒N
    Key: CKRZKMFTZCFYGB-UHFFFAOYSA-N ☒N
  • InChI=1/C6H7NO/c8-7-6-4-2-1-3-5-6/h1-5,7-8H
    Key: CKRZKMFTZCFYGB-UHFFFAOYAK
  • ONC1=CC=CC=C1
Properties
C6H7NO
Molar mass 109.1274 g/mol
Appearance yellow needles
Melting point 80 to 81 °C (176 to 178 °F; 353 to 354 K)
-68.2·10−6 cm3/mol
Related compounds
Related compounds
hydroxylamine, nitrosobenzene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Phenylhydroxylamine is the organic compound with the formula C6H5NHOH. It is an intermediate in the redox-related pair C6H5NH2 and C6H5NO. Phenylhydroxylamine should not be confused with its isomer α-phenylhydroxylamine or O-phenylhydroxylamine.

Preparation

This compound can be prepared by the reduction of nitrobenzene with zinc in the presence of NH4Cl.[1][2]

Alternatively, it can be prepared by transfer hydrogenation of nitrobenzene using hydrazine as an H2 source over a rhodium

catalyst.[3]

Reactions

Cupferron (N-nitroso-N-phenylhydroxylamine), a reagent for qualitative inorganic analysis, is prepared from phenylhydroxylamine.

Phenylhydroxylamine is unstable to heating, and in the presence of strong acids easily rearranges to

dichromate gives nitrosobenzene
.

Like other hydroxylamines it will react with aldehydes to form nitrones, illustrative is the condensation with benzaldehyde to form diphenylnitrone, a well-known 1,3-dipolar compound:[4]

C6H5NHOH + C6H5CHO → C6H5N(O)=CHC6H5 + H2O

Phenylhydroxylamine is attacked by NO+ sources to give cupferron:[5]

C6H5NHOH + C4H9ONO + NH3 → NH4[C6H5N(O)NO] + C4H9OH

References

  1. ^ E. Bamberger “Ueber das Phenylhydroxylamin” Chemische Berichte, volume 27 1548-1557 (1894). E. Bamberger, "Ueber die Reduction der Nitroverbindungen" Chemische Berichte, volume 27 1347-1350 (1894) (first report)
  2. .
  3. doi:10.15227/orgsyn.067.0187.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  4. doi:10.15227/orgsyn.046.0127.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  5. .