Planck relation

Source: Wikipedia, the free encyclopedia.

The Planck relation[1][2][3] (referred to as Planck's energy–frequency relation,[4] the Planck–Einstein relation,[5] Planck equation,[6] and Planck formula,[7] though the latter might also refer to Planck's law[8][9]) is a fundamental equation in quantum mechanics which states that the energy of a photon, E, known as photon energy, is proportional to its frequency, ν:

The

constant of proportionality, h, is known as the Planck constant. Several equivalent forms of the relation exist, including in terms of angular frequency
, ω:

where . Written using the symbol f for frequency, the relation is as follows:

The relation accounts for the quantized nature of light and plays a key role in understanding phenomena such as the photoelectric effect and black-body radiation (where the related Planck postulate can be used to derive Planck's law).

Spectral forms

Light can be characterized using several spectral quantities, such as frequency ν, wavelength λ, wavenumber , and their angular equivalents (

angular wavenumber
k). These quantities are related through
so the Planck relation can take the following 'standard' forms
as well as the following 'angular' forms,

The standard forms make use of the

reduced Planck constant ħ = h/. Here c is the speed of light
.

de Broglie relation

The de Broglie relation,[10][11][12] also known as de Broglie's momentum–wavelength relation,[4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = would also apply to them, and postulated that particles would have a wavelength equal to λ = h/p. Combining de Broglie's postulate with the Planck–Einstein relation leads to

or

The de Broglie relation is also often encountered in

vector
form
where p is the momentum vector, and k is the
angular wave vector
.

Bohr's frequency condition

Bohr's frequency condition

electronic transition is related to the energy difference (ΔE) between the two energy levels involved in the transition:[14]

This is a direct consequence of the Planck–Einstein relation.

See also

References

  1. ^ French & Taylor (1978), pp. 24, 55.
  2. ^ Cohen-Tannoudji, Diu & Laloë (1973/1977), pp. 10–11.
  3. ^ Kalckar 1985, p. 39.
  4. ^ a b Schwinger (2001), p. 203.
  5. ^ Landsberg (1978), p. 199.
  6. ^ Landé (1951), p. 12.
  7. ^ Griffiths, D.J. (1995), pp. 143, 216.
  8. ^ Griffiths, D.J. (1995), pp. 217, 312.
  9. ^ Weinberg (2013), pp. 24, 28, 31.
  10. ^ Weinberg (1995), p. 3.
  11. ^ Messiah (1958/1961), p. 14.
  12. ^ Cohen-Tannoudji, Diu & Laloë (1973/1977), p. 27.
  13. ^ Flowers et al. (n.d), 6.2 The Bohr Model
  14. ^ van der Waerden (1967), p. 5.

Cited bibliography