Polar surface area

Source: Wikipedia, the free encyclopedia.
Electrical potential surface of paracetamol showing polar areas in red and blue

The polar surface area (PSA) or topological polar surface area (TPSA) of a molecule is defined as the surface sum over all polar atoms or molecules, primarily oxygen and nitrogen, also including their attached hydrogen atoms.

PSA is a commonly used medicinal chemistry metric for the optimization of a drug's ability to permeate cells. Molecules with a polar surface area of greater than 140 angstroms squared (Å2) tend to be poor at permeating cell membranes.[1] For molecules to penetrate the blood–brain barrier (and thus act on receptors in the central nervous system), a PSA less than 90 Å2 is usually needed.[2]

TPSA is a valuable tool in drug discovery and development. By analyzing a drug candidate's TPSA, scientists can predict its potential for oral bioavailability and ability to reach target sites within the body. This prediction hinges on a drug's ability to permeate biological barriers.

Permeating these barriers, such as the Blood-Brain Barrier (BBB), the Placental Barrier (PB), and the Blood-Mammary Barrier (BM), is crucial for many drugs to reach their intended targets.

The BBB, for example, protects the brain from harmful substances. Drugs with a lower TPSA (generally below 90 Ų) tend to permeate the BBB more easily, allowing them to reach the brain and exert their therapeutic effects (Shityakov et al[3]., 2013).

Similarly, for drugs intended to treat the fetus, a lower TPSA (below 60 Ų) is preferred to ensure they can pass through the placenta (Augustiño-Roubina[4] et al., 2019).

Breastfeeding mothers also need consideration. Here, an optimal TPSA for a drug is around 60-80 Ų to allow it to reach the breast tissue for milk production, while drugs exceeding 90 Ų are less likely to permeate the Blood-Mammary Barrier.[5]

See also

References

Literature

External links