Quarter hypercubic honeycomb

Source: Wikipedia, the free encyclopedia.

In

Coxeter group
for n ≥ 5, with = and for quarter n-cubic honeycombs = .[1]

n Name Schläfli
symbol
Coxeter diagrams
Facets Vertex figure
3
quarter square tiling
q{4,4} or

or

h{4}={2} { }×{ }
{ }×{ }
4
quarter cubic honeycomb
q{4,3,4} or
or

h{4,3}

h2{4,3}
triangular antiprism
5
quarter tesseractic honeycomb
q{4,32,4} or
or

h{4,32}

h3{4,32}

{3,4}×{}
6 quarter 5-cubic honeycomb q{4,33,4}

h{4,33}
h4{4,33}

Rectified 5-cell antiprism
7 quarter 6-cubic honeycomb q{4,34,4}

h{4,34}
h5{4,34}
{3,3}×{3,3}
8 quarter 7-cubic honeycomb q{4,35,4}

h{4,35}
h6{4,35}
{3,3}×{3,31,1}
9 quarter 8-cubic honeycomb q{4,36,4}

h{4,36}

h7{4,36}
{3,3}×{3,32,1}
{3,31,1}×{3,31,1}
 
n quarter n-cubic honeycomb q{4,3n−3,4} ... h{4,3n−2} hn−2{4,3n−2} ...

See also

References

  1. ^ Coxeter, Regular and semi-regular honeycoms, 1988, p.318-319
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3
Uniform convex honeycomb
0[4] δ4 4 4
E4
Uniform 4-honeycomb
0[5] δ5 5 5 24-cell honeycomb
E5
Uniform 5-honeycomb
0[6] δ6 6 6
E6
Uniform 6-honeycomb
0[7] δ7 7 7 222
E7
Uniform 7-honeycomb
0[8] δ8 8 8 133331
E8
Uniform 8-honeycomb
0[9] δ9 9 9 152251521
E9
Uniform 9-honeycomb
0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En−1 Uniform (n−1)-honeycomb
0[n]
δn n n 1k22k1k21