Quarter hypercubic honeycomb
Appearance
In
Coxeter group
for n ≥ 5, with = and for quarter n-cubic honeycombs = .[1]
qδn | Name | Schläfli symbol |
Coxeter diagrams
|
Facets | Vertex figure | ||
---|---|---|---|---|---|---|---|
qδ3 | ![]() quarter square tiling |
q{4,4} | ![]() ![]() ![]() ![]() ![]() ![]()
|
h{4}={2} | { }×{ } | ![]() { }×{ } | |
qδ4 | ![]() quarter cubic honeycomb |
q{4,3,4} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() h{4,3} |
![]() h2{4,3} |
triangular antiprism
| |
qδ5 | quarter tesseractic honeycomb
|
q{4,32,4} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() h{4,32} |
![]() h3{4,32} |
![]() {3,4}×{} | |
qδ6 | quarter 5-cubic honeycomb | q{4,33,4} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() h{4,33} |
h4{4,33}
|
![]() Rectified 5-cell antiprism | |
qδ7 | quarter 6-cubic honeycomb | q{4,34,4} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() h{4,34} |
h5{4,34}
|
{3,3}×{3,3} | |
qδ8 | quarter 7-cubic honeycomb | q{4,35,4} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() h{4,35} |
h6{4,35}
|
{3,3}×{3,31,1} | |
qδ9 | quarter 8-cubic honeycomb | q{4,36,4} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() h{4,36} |
![]() h7{4,36} |
{3,3}×{3,32,1} {3,31,1}×{3,31,1} | |
qδn | quarter n-cubic honeycomb | q{4,3n−3,4} | ... | h{4,3n−2} | hn−2{4,3n−2} | ... |
See also
- Hypercubic honeycomb
- Alternated hypercubic honeycomb
- Simplectic honeycomb
- Truncated simplectic honeycomb
- Omnitruncated simplectic honeycomb
References
- ^ Coxeter, Regular and semi-regular honeycoms, 1988, p.318-319
- ISBN 0-486-61480-8
- pp. 122–123, 1973. (The lattice of hypercubes γn form the cubic honeycombs, δn+1)
- pp. 154–156: Partial truncation or alternation, represented by q prefix
- p. 296, Table II: Regular honeycombs, δn+1
- Kaleidoscopes: Selected Writings of ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45] See p318 [2]
- Klitzing, Richard. "1D-8D Euclidean tesselations".
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb
|
0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb
|
0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb
|
0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb
|
0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb
|
0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb
|
0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb
|
0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En−1 | Uniform (n−1)-honeycomb | 0[n]
|
δn | hδn | qδn | 1k2 • 2k1 • k21 |