Rapid single flux quantum

Source: Wikipedia, the free encyclopedia.

In

superconducting or SFQ logic. Others include Reciprocal Quantum Logic (RQL), ERSFQ – energy-efficient RSFQ version that does not use bias resistors, etc. Josephson junctions are the active elements for RSFQ electronics, just as transistors are the active elements for semiconductor electronics. RSFQ is a classical digital, not quantum computing
, technology.

RSFQ is very different from the CMOS transistor technology used in conventional computers:

  • cryogenic
    temperatures.
  • Josephson junctions
    are used to encode, process, and transport digital information instead of the voltage levels produced by transistors in semiconductor electronics.
  • SFQ voltage pulses travel on superconducting transmission lines which have very small, and usually negligible, dispersion if no spectral component of the pulse is above the frequency of the energy gap of the superconductor.
  • In the case of SFQ pulses of 1 ps, it is possible to clock the circuits at frequencies of the order of 100 GHz (one pulse every 10 picoseconds).

An SFQ pulse is produced when magnetic flux through a superconducting loop containing a Josephson junction changes by one flux quantum, Φ0 as a result of the junction switching. SFQ pulses have a quantized area ʃV(t)dt = Φ02.07×10−15 Wb = 2.07 mV⋅ps = 2.07 mA⋅pH due to magnetic flux quantization, a fundamental property of superconductors. Depending on the parameters of the Josephson junctions, the pulses can be as narrow as 1 ps with an amplitude of about 2 mV, or broader (e.g., 5–10 ps) with correspondingly lower amplitude. The typical value of the pulse amplitude is approximately 2IcRn, where IcRn is the product of the junction critical current, Ic, and the junction damping resistor, Rn. For Nb-based junction technology IcRn is on the order of 1 mV.

Advantages

Disadvantages

  • Requires
    thermal noise
    .
  • The cooling requirements can be relaxed through the use of
    Josephson energy
    .
  • Static power dissipation that is typically 10–100 times larger than the dynamic power required to perform logic operations was one of the drawbacks. However, the static power dissipation was eliminated in ERSFQ version of RSFQ by using superconducting inductors and Josephson junctions instead of bias resistors, the source of the static power dissipation.

Applications

See also

References

  1. CiteSeerX 10.1.1.23.4753. {{cite journal}}: Cite journal requires |journal= (help
    )
  2. ^ Bunyk, Paul, Mikhail Dorojevets, K. Likharev, and Dmitry Zinoviev. "RSFQ subsystem for HTMT petaFLOPS computing." Stony Brook HTMT Technical Report 3 (1997).

Readings

External links