Transistor

Source: Wikipedia, the free encyclopedia.

SOT-23, TO-92, TO-126, and TO-3
(G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (white).

A transistor is a

semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.[2]

Mohamed Atalla and Dawon Kahng at Bell Labs in 1959.[5][6][7] Transistors revolutionized the field of electronics and paved the way for smaller and cheaper radios, calculators, computers
, and other electronic devices.

Most transistors are made from very pure silicon, and some from germanium, but certain other semiconductor materials are sometimes used. A transistor may have only one kind of charge carrier in a field-effect transistor, or may have two kinds of charge carriers in bipolar junction transistor devices. Compared with the vacuum tube, transistors are generally smaller and require less power to operate. Certain vacuum tubes have advantages over transistors at very high operating frequencies or high operating voltages, such as Traveling-wave tubes and Gyrotrons. Many types of transistors are made to standardized specifications by multiple manufacturers.

History

Julius Edgar Lilienfeld proposed the concept of a field-effect transistor in 1925.

The

thermionic triode, a vacuum tube invented in 1907, enabled amplified radio technology and long-distance telephony. The triode, however, was a fragile device that consumed a substantial amount of power. In 1909, physicist William Eccles discovered the crystal diode oscillator.[8] Physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor (FET) in Canada in 1925,[9] intended as a solid-state replacement for the triode.[10][11] He filed identical patents in the United States in 1926[12] and 1928.[13][14] However, he did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Because the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such a device had been built.[15] In 1934, inventor Oskar Heil patented a similar device in Europe.[16]

Bipolar transistors

Walter Brattain at Bell Labs in 1948; Bardeen and Brattain invented the point-contact transistor in 1947 and Shockley invented the bipolar junction transistor
in 1948.
A replica of the first working transistor, a point-contact transistor invented in 1947
Herbert Mataré (pictured in 1950) independently invented a point-contact transistor in June 1948.
A Philco surface-barrier transistor developed and produced in 1953

From November 17 to December 23, 1947,

transresistance.[18][19][20] According to Lillian Hoddeson and Vicki Daitch, Shockley proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld's patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because the idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor.[15] To acknowledge this accomplishment, Shockley, Bardeen and Brattain jointly received the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect".[21][22]

Shockley's team initially attempted to build a field-effect transistor (FET) by trying to modulate the conductivity of a semiconductor, but was unsuccessful, mainly due to problems with the

In 1948, the point-contact transistor was independently invented by physicists

Westinghouse subsidiary in Paris. Mataré had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort during World War II. With this knowledge, he began researching the phenomenon of "interference" in 1947. By June 1948, witnessing currents flowing through point-contacts, he produced consistent results using samples of germanium produced by Welker, similar to what Bardeen and Brattain had accomplished earlier in December 1947. Realizing that Bell Labs' scientists had already invented the transistor, the company rushed to get its "transistron" into production for amplified use in France's telephone network, filing his first transistor patent application on August 13, 1948.[25][26][27]

The first

Gordon Teal and Morgan Sparks successfully produced a working bipolar NPN junction amplifying germanium transistor. Bell announced the discovery of this new "sandwich" transistor in a press release on July 4, 1951.[28][29]

The first high-frequency transistor was the surface-barrier germanium transistor developed by Philco in 1953, capable of operating at frequencies up to 60 MHz.[30] They were made by etching depressions into an n-type germanium base from both sides with jets of indium(III) sulfate until it was a few ten-thousandths of an inch thick. Indium electroplated into the depressions formed the collector and emitter.[31][32]

AT&T first used transistors in telecommunications equipment in the No. 4A Toll Crossbar Switching System in 1953, for selecting trunk circuits from routing information encoded on translator cards.

phototransistor
, read the mechanical encoding from punched metal cards.

The first prototype pocket

Internationale Funkausstellung Düsseldorf from August 29 to September 6, 1953.[34][35] The first production-model pocket transistor radio was the Regency TR-1, released in October 1954.[22] Produced as a joint venture between the Regency Division of Industrial Development Engineering Associates, I.D.E.A. and Texas Instruments of Dallas, Texas, the TR-1 was manufactured in Indianapolis, Indiana. It was a near pocket-sized radio with four transistors and one germanium diode. The industrial design was outsourced to the Chicago firm of Painter, Teague and Petertil. It was initially released in one of six colours: black, ivory, mandarin red, cloud grey, mahogany and olive green. Other colours shortly followed.[36][37][38]

The first production all-transistor car radio was developed by Chrysler and Philco corporations and was announced in the April 28, 1955, edition of The Wall Street Journal. Chrysler made the Mopar model 914HR available as an option starting in fall 1955 for its new line of 1956 Chrysler and Imperial cars, which reached dealership showrooms on October 21, 1955.[39][40]

The

electronic technology in the late 1950s.[43]

The first working silicon transistor was developed at Bell Labs on January 26, 1954, by

Gordon Teal, an expert in growing crystals of high purity, who had previously worked at Bell Labs.[44][45][46]

Field effect transistors

The basic principle of the field-effect transistor (FET) was first proposed by physicist Julius Edgar Lilienfeld when he filed a patent for a device similar to MESFET in 1926, and for an insulated-gate field-effect transistor in 1928.[11][47] The FET concept was later also theorized by engineer Oskar Heil in the 1930s and by William Shockley in the 1940s.

In 1945

George C. Dacey and Ian M. Ross.[49]

In 1948, Bardeen patented the progenitor of MOSFET, an insulated-gate FET (IGFET) with an inversion layer. Bardeen's patent, and the concept of an inversion layer, forms the basis of CMOS technology today.[50]

MOSFET (MOS transistor)

Mohamed Atalla (left) and Dawon Kahng (right) invented the MOSFET
(MOS transistor) at Bell Labs in 1959.

In the early years of the

surface state barrier that prevented the external electric field from penetrating the material.[51]

In 1957, Bell Labs engineer

and proposed that it could be used to build the first working silicon FET.

Atalla and his Korean colleague

high-density integrated circuits,[7] allowing the integration of more than 10,000 transistors in a single IC.[58]

FinFET (fin field-effect transistor), a type of 3D non-planar multi-gate MOSFET, originated from the research of Digh Hisamoto and his team at Hitachi Central Research Laboratory in 1989.[63][64]

Importance

Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.[2]

The invention of the first transistor at Bell Labs was named an

junction transistor in 1948 and the MOSFET in 1959.[66]

The MOSFET is by far the most widely used transistor, in applications ranging from

US Patent and Trademark Office calls it a "groundbreaking invention that transformed life and culture around the world".[67] Its ability to be mass-produced by a highly automated process (semiconductor device fabrication), from relatively basic materials, allows astonishingly low per-transistor costs. MOSFETs are the most numerously produced artificial objects in history, with more than 13 sextillion manufactured by 2018.[72]

Although several companies each produce over a billion individually packaged (known as

integrated circuits (also known as ICs, microchips, or simply chips), along with diodes, resistors, capacitors and other electronic components, to produce complete electronic circuits. A logic gate consists of up to about 20 transistors, whereas an advanced microprocessor, as of 2022, may contain as many as 57 billion MOSFETs.[74] Transistors are often organized into logic gates in microprocessors to perform computation.[75]

The transistor's low cost, flexibility and reliability have made it ubiquitous. Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery. It is often easier and cheaper to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical system.

Simplified operation

A simple circuit diagram showing the labels of an n–p–n bipolar transistor

A transistor can use a small signal applied between one pair of its terminals to control a much larger signal at another pair of terminals, a property called gain. It can produce a stronger output signal, a voltage or current, proportional to a weaker input signal, acting as an amplifier. It can also be used as an electrically controlled switch, where the amount of current is determined by other circuit elements.[76]

There are two types of transistors, with slight differences in how they are used:

  • A
    bipolar junction transistor (BJT)
    has terminals labeled base, collector and emitter. A small current at the base terminal, flowing between the base and the emitter, can control or switch a much larger current between the collector and emitter.

The top image in this section represents a typical bipolar transistor in a circuit. A charge flows between emitter and collector terminals depending on the current in the base. Because the base and emitter connections behave like a semiconductor diode, a voltage drop develops between them. The amount of this drop, determined by the transistor's material, is referred to as VBE.[77]

Transistor as a switch

BJT used as an electronic switch in grounded-emitter configuration

Transistors are commonly used in

electronic switches which can be either in an "on" or "off" state, both for high-power applications such as switched-mode power supplies and for low-power applications such as logic gates. Important parameters for this application include the current switched, the voltage handled, and the switching speed, characterized by the rise and fall times.[77]

In a switching circuit, the goal is to simulate, as near as possible, the ideal switch having the properties of an open circuit when off, the short circuit when on, and an instantaneous transition between the two states. Parameters are chosen such that the "off" output is limited to leakage currents too small to affect connected circuitry, the resistance of the transistor in the "on" state is too small to affect circuitry, and the transition between the two states is fast enough not to have a detrimental effect.[77]

In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises, the emitter and collector currents rise exponentially. The collector voltage drops because of reduced resistance from the collector to the emitter. If the voltage difference between the collector and emitter were zero (or near zero), the collector current would be limited only by the load resistance (light bulb) and the supply voltage. This is called saturation because the current is flowing from collector to emitter freely. When saturated, the switch is said to be on.[78]

The use of bipolar transistors for switching applications requires biasing the transistor so that it operates between its cut-off region in the off-state and the saturation region (on). This requires sufficient base drive current. As the transistor provides current gain, it facilitates the switching of a relatively large current in the collector by a much smaller current into the base terminal. The ratio of these currents varies depending on the type of transistor, and even for a particular type, varies depending on the collector current. In the example of a light-switch circuit, as shown, the resistor is chosen to provide enough base current to ensure the transistor is saturated.[77] The base resistor value is calculated from the supply voltage, transistor C-E junction voltage drop, collector current, and amplification factor beta.[79]

Transistor as an amplifier

An amplifier circuit, a common-emitter configuration with a voltage-divider bias circuit

The

common-emitter amplifier is designed so that a small change in voltage (Vin) changes the small current through the base of the transistor whose current amplification combined with the properties of the circuit means that small swings in Vin produce large changes in Vout.[77]

Various configurations of single transistor amplifiers are possible, with some providing current gain, some voltage gain, and some both.

From

sound reproduction, radio transmission, and signal processing. The first discrete-transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.[77]

Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive.

Comparison with vacuum tubes

Before transistors were developed, vacuum (electron) tubes (or in the UK "thermionic valves" or just "valves") were the main active components in electronic equipment.

Advantages

The key advantages that have allowed transistors to replace vacuum tubes in most applications are

  • No cathode heater (which produces the characteristic orange glow of tubes), reducing power consumption, eliminating delay as tube heaters warm up, and immune from
    cathode poisoning
    and depletion.
  • Very small size and weight, reducing equipment size.
  • Large numbers of extremely small transistors can be manufactured as a single integrated circuit.
  • Low operating voltages compatible with batteries of only a few cells.
  • Circuits with greater energy efficiency are usually possible. For low-power applications (for example, voltage amplification) in particular, energy consumption can be very much less than for tubes.
  • Complementary devices available, providing design flexibility including complementary-symmetry circuits, not possible with vacuum tubes.
  • Very low sensitivity to mechanical shock and vibration, providing physical ruggedness and virtually eliminating shock-induced spurious signals (for example, microphonics in audio applications).
  • Not susceptible to breakage of a glass envelope, leakage, outgassing, and other physical damage.

Limitations

Transistors may have the following limitations:

  • They lack the higher
    travelling wave tubes
    used as amplifiers in some satellites
  • Transistors and other solid-state devices are susceptible to damage from very brief electrical and thermal events, including electrostatic discharge in handling. Vacuum tubes are electrically much more rugged.
  • They are sensitive to radiation and cosmic rays (special radiation-hardened chips are used for spacecraft devices).
  • In audio applications, transistors lack the lower-harmonic distortion – the so-called tube sound – which is characteristic of vacuum tubes, and is preferred by some.[80]

Types

Classification

PNP P-channel
NPN N-channel
BJT JFET
BJT and JFET symbols
P-channel
N-channel
MOSFET enh MOSFET dep
MOSFET symbols

Transistors are categorized by

Hence, a particular transistor may be described as silicon, surface-mount, BJT, NPN, low-power, high-frequency switch.

Mnemonics

Convenient

electrical symbol) involves the direction of the arrow. For the BJT
, on an n-p-n transistor symbol, the arrow will "Not Point iN". On a p-n-p transistor symbol, the arrow "Points iN Proudly". However, this does not apply to MOSFET-based transistor symbols as the arrow is typically reversed (i.e. the arrow for the n-p-n points inside).

Field-effect transistor (FET)

FET
and its Id-Vg curve. At first, when no gate voltage is applied, there are no inversion electrons in the channel, so the device is turned off. As gate voltage increases, the inversion electron density in the channel increases, the current increases, and the device turns on.

The field-effect transistor, sometimes called a unipolar transistor, uses either electrons (in n-channel FET) or holes (in p-channel FET) for conduction. The four terminals of the FET are named source, gate, drain, and body (substrate). On most FETs, the body is connected to the source inside the package, and this will be assumed for the following description.

In a FET, the drain-to-source current flows via a conducting channel that connects the source region to the drain region. The conductivity is varied by the electric field that is produced when a voltage is applied between the gate and source terminals, hence the current flowing between the drain and source is controlled by the voltage applied between the gate and source. As the gate–source voltage (VGS) is increased, the drain–source current (IDS) increases exponentially for VGS below threshold, and then at a roughly quadratic rate: (IDS ∝ (VGSVT)2, where VT is the threshold voltage at which drain current begins)

65 nm technology node.[84]

For low noise at narrow bandwidth, the higher input resistance of the FET is advantageous.

FETs are divided into two families: junction FET (JFET) and insulated gate FET (IGFET). The IGFET is more commonly known as a metal–oxide–semiconductor FET (MOSFET), reflecting its original construction from layers of metal (the gate), oxide (the insulation), and semiconductor. Unlike IGFETs, the JFET gate forms a p–n diode with the channel which lies between the source and drains. Functionally, this makes the n-channel JFET the solid-state equivalent of the vacuum tube triode which, similarly, forms a diode between its grid and cathode. Also, both devices operate in the depletion-mode, they both have a high input impedance, and they both conduct current under the control of an input voltage.

Metal–semiconductor FETs (

reverse biased p–n junction is replaced by a metal–semiconductor junction
. These, and the HEMTs (high-electron-mobility transistors, or HFETs), in which a two-dimensional electron gas with very high carrier mobility is used for charge transport, are especially suitable for use at very high frequencies (several GHz).

FETs are further divided into depletion-mode and enhancement-mode types, depending on whether the channel is turned on or off with zero gate-to-source voltage. For enhancement mode, the channel is off at zero bias, and a gate potential can "enhance" the conduction. For the depletion mode, the channel is on at zero bias, and a gate potential (of the opposite polarity) can "deplete" the channel, reducing conduction. For either mode, a more positive gate voltage corresponds to a higher current for n-channel devices and a lower current for p-channel devices. Nearly all JFETs are depletion-mode because the diode junctions would forward bias and conduct if they were enhancement-mode devices, while most IGFETs are enhancement-mode types.

Metal–oxide–semiconductor FET (MOSFET)

The metal–oxide–semiconductor field-effect transistor (

signals. The MOSFET is by far the most common transistor, and the basic building block of most modern electronics.[71] The MOSFET accounts for 99.9% of all transistors in the world.[85]

Bipolar junction transistor (BJT)

Bipolar transistors are so named because they conduct by using both majority and minority carriers. The bipolar junction transistor, the first type of transistor to be mass-produced, is a combination of two junction diodes and is formed of either a thin layer of p-type semiconductor sandwiched between two n-type semiconductors (an n–p–n transistor), or a thin layer of n-type semiconductor sandwiched between two p-type semiconductors (a p–n–p transistor). This construction produces two p–n junctions: a base-emitter junction and a base-collector junction, separated by a thin region of semiconductor known as the base region. (Two junction diodes wired together without sharing an intervening semiconducting region will not make a transistor.)

BJTs have three terminals, corresponding to the three layers of semiconductor—an emitter, a base, and a collector. They are useful in amplifiers because the currents at the emitter and collector are controllable by a relatively small base current.[86] In an n–p–n transistor operating in the active region, the emitter-base junction is forward-biased (electrons and holes recombine at the junction), and the base-collector junction is reverse-biased (electrons and holes are formed at, and move away from, the junction), and electrons are injected into the base region. Because the base is narrow, most of these electrons will diffuse into the reverse-biased base-collector junction and be swept into the collector; perhaps one-hundredth of the electrons will recombine in the base, which is the dominant mechanism in the base current. As well, as the base is lightly doped (in comparison to the emitter and collector regions), recombination rates are low, permitting more carriers to diffuse across the base region. By controlling the number of electrons that can leave the base, the number of electrons entering the collector can be controlled.[86] Collector current is approximately β (common-emitter current gain) times the base current. It is typically greater than 100 for small-signal transistors but can be smaller in transistors designed for high-power applications.

Unlike the field-effect transistor (see below), the BJT is a low-input-impedance device. Also, as the base-emitter voltage (VBE) is increased the base-emitter current and hence the collector-emitter current (ICE) increase exponentially according to the

Ebers-Moll model. Because of this exponential relationship, the BJT has a higher transconductance
than the FET.

Bipolar transistors can be made to conduct by exposure to light because the absorption of photons in the base region generates a photocurrent that acts as a base current; the collector current is approximately β times the photocurrent. Devices designed for this purpose have a transparent window in the package and are called

phototransistors
.

Usage of MOSFETs and BJTs

The

power electronic applications in the 1980s. In integrated circuits
, the desirable properties of MOSFETs allowed them to capture nearly all market share for digital circuits in the 1970s. Discrete MOSFETs (typically power MOSFETs) can be applied in transistor applications, including analog circuits, voltage regulators, amplifiers, power transmitters, and motor drivers.

Other transistor types

A transistor symbol created on Portuguese pavement at the University of Aveiro
are two BJTs connected together to provide a high current gain equal to the product of the current gains of the two transistors
  • ASEA Brown Boveri (ABB) 5SNA2400E170100 ,[88]
    intended for three-phase power supplies, houses three n–p–n IGBTs in a case measuring 38 by 140 by 190 mm and weighing 1.5 kg. Each IGBT is rated at 1,700 volts and can handle 2,400 amperes
  • Phototransistor
    .
  • Emitter-switched bipolar transistor (ESBT) is a monolithic configuration of a high-voltage bipolar transistor and a low-voltage power MOSFET in cascode topology. It was introduced by STMicroelectronics in the 2000s,[89] and abandoned a few years later around 2012.[90]
  • Multiple-emitter transistor, used in transistor–transistor logic and integrated current mirrors
  • record player or radio front ends. Effectively, it is a very large number of transistors in parallel where, at the output, the signal is added constructively, but random noise is added only stochastically.[91]
  • quantum tunneling
    through a barrier.
  • Diffusion transistor
    , formed by diffusing dopants into semiconductor substrate; can be both BJT and FET.
  • Unijunction transistor, which can be used as a simple pulse generator. It comprises the main body of either p-type or n-type semiconductor with ohmic contacts at each end (terminals Base1 and Base2). A junction with the opposite semiconductor type is formed at a point along the length of the body for the third terminal (Emitter).
  • Single-electron transistors (SET), consist of a gate island between two tunneling junctions. The tunneling current is controlled by a voltage applied to the gate through a capacitor.[92]
  • Nanofluidic transistor, controls the movement of ions through sub-microscopic, water-filled channels.[93]
  • Multigate devices:
  • Junctionless nanowire transistor (JNT), uses a simple nanowire of silicon surrounded by an electrically isolated "wedding ring" that acts to gate the flow of electrons through the wire.
  • Nanoscale vacuum-channel transistor, when in 2012, NASA and the National Nanofab Center in South Korea were reported to have built a prototype vacuum-channel transistor in only 150 nanometers in size, can be manufactured cheaply using standard silicon semiconductor processing, can operate at high speeds even in hostile environments, and could consume just as much power as a standard transistor.[94]
  • Organic electrochemical transistor.
  • Solaristor (from solar cell transistor), a two-terminal gate-less self-powered phototransistor.
  • Germanium–Tin Transistor[95]
  • Wood transistor[96][97]
  • Paper transistor[98]
  • Carbon-doped silicon-germanium (Si-Ge:C) transistor
  • Diamond transistor[99]
  • Aluminum nitride transistor[100]
  • Super-lattice castellated field effect transistors[101]
  • Device identification

    Three major identification standards are used for designating transistor devices. In each, the alphanumeric prefix provides clues to the type of the device.

    Joint Electron Device Engineering Council (JEDEC)

    The JEDEC part numbering scheme evolved in the 1960s in the United States. The JEDEC EIA-370 transistor device numbers usually start with 2N, indicating a three-terminal device. Dual-gate field-effect transistors are four-terminal devices, and begin with 3N. The prefix is followed by a two-, three- or four-digit number with no significance as to device properties, although early devices with low numbers tend to be germanium devices. For example, 2N3055 is a silicon n–p–n power transistor, 2N1301 is a p–n–p germanium switching transistor. A letter suffix, such as "A", is sometimes used to indicate a newer variant, but rarely gain groupings.

    JEDEC prefix table
    Prefix Type and usage
    1N two-terminal device, such as diodes
    2N three-terminal device, such as transistors or single-gate field-effect transistors
    3N four-terminal device, such as dual-gate field-effect transistors

    Japanese Industrial Standard (JIS)

    In Japan, the JIS semiconductor designation (|JIS-C-7012), labels transistor devices starting with 2S,[102] e.g., 2SD965, but sometimes the "2S" prefix is not marked on the package–a 2SD965 might only be marked D965 and a 2SC1815 might be listed by a supplier as simply C1815. This series sometimes has suffixes, such as R, O, BL, standing for red, orange, blue, etc., to denote variants, such as tighter hFE (gain) groupings.

    JIS transistor prefix table
    Prefix Type and usage
    2SA high-frequency p–n–p BJT
    2SB audio-frequency p–n–p BJT
    2SC high-frequency n–p–n BJT
    2SD audio-frequency n–p–n BJT
    2SJ P-channel FET (both JFET and MOSFET)
    2SK N-channel FET (both JFET and MOSFET)

    European Electronic Component Manufacturers Association (EECA)

    The European Electronic Component Manufacturers Association (EECA) uses a numbering scheme that was inherited from Pro Electron when it merged with EECA in 1983. This scheme begins with two letters: the first gives the semiconductor type (A for germanium, B for silicon, and C for materials like GaAs); the second letter denotes the intended use (A for diode, C for general-purpose transistor, etc.). A three-digit sequence number (or one letter and two digits, for industrial types) follows. With early devices this indicated the case type. Suffixes may be used, with a letter (e.g. "C" often means high hFE, such as in: BC549C[103]) or other codes may follow to show gain (e.g. BC327-25) or voltage rating (e.g. BUK854-800A[104]). The more common prefixes are:

    EECA transistor prefix table
    Prefix Type and usage Example Equivalent Reference
    AC
    AF
    transistor
    AC126 NTE102A
    AD Germanium,
    AF
    power transistor
    AD133 NTE179
    AF Germanium, small-signal
    RF
    transistor
    AF117 NTE160
    AL Germanium,
    RF
    power transistor
    ALZ10 NTE100
    AS Germanium, switching transistor ASY28 NTE101
    AU Germanium, power switching transistor AU103 NTE127
    BC Silicon, small-signal transistor ("general purpose") BC548 2N3904 Datasheet
    BD Silicon, power transistor BD139 NTE375 Datasheet
    BF Silicon,
    FET
    BF245 NTE133 Datasheet
    BS Silicon, switching transistor (BJT or MOSFET)
    BS170
    2N7000 Datasheet
    BL Silicon, high frequency, high power (for transmitters) BLW60 NTE325 Datasheet
    BU Silicon, high voltage (for CRT horizontal deflection circuits) BU2520A NTE2354 Datasheet
    CF Gallium arsenide, small-signal microwave transistor (MESFET CF739 Datasheet
    CL Gallium arsenide, microwave power transistor (FET) CLY10 Datasheet

    Proprietary

    Manufacturers of devices may have their proprietary numbering system, for example

    FET) now is an unreliable indicator of who made the device. Some proprietary naming schemes adopt parts of other naming schemes, for example, a PN2222A is a (possibly Fairchild Semiconductor
    ) 2N2222A in a plastic case (but a PN108 is a plastic version of a BC108, not a 2N108, while the PN100 is unrelated to other xx100 devices).

    Military part numbers sometimes are assigned their codes, such as the British Military CV Naming System.

    Manufacturers buying large numbers of similar parts may have them supplied with "house numbers", identifying a particular purchasing specification and not necessarily a device with a standardized registered number. For example, an HP part 1854,0053 is a (JEDEC) 2N2218 transistor[105][106] which is also assigned the CV number: CV7763[107]

    Naming problems

    With so many independent naming schemes, and the abbreviation of part numbers when printed on the devices, ambiguity sometimes occurs. For example, two different devices may be marked "J176" (one the J176 low-power JFET, the other the higher-powered MOSFET 2SJ176).

    As older "through-hole" transistors are given surface-mount packaged counterparts, they tend to be assigned many different part numbers because manufacturers have their systems to cope with the variety in pinout arrangements and options for dual or matched n–p–n + p–n–p devices in one pack. So even when the original device (such as a 2N3904) may have been assigned by a standards authority, and well known by engineers over the years, the new versions are far from standardized in their naming.

    Construction

    Semiconductor material

    Semiconductor material characteristics
    Semiconductor
    material
    Junction forward
    voltage @ 25 °C, V
    Electron mobility
    @ 25 °C, m2/(V·s)
    Hole mobility
    @ 25 °C, m2/(V·s)
    Max. junction
    temp., °C
    Ge 0.27 0.39 0.19 70 to 100
    Si 0.71 0.14 0.05 150 to 200
    GaAs 1.03 0.85 0.05 150 to 200
    Al–Si junction 0.3 150 to 200

    The first BJTs were made from

    silicon-germanium
    (SiGe). Single-element semiconductor material (Ge and Si) is described as elemental.

    Rough parameters for the most common semiconductor materials used to make transistors are given in the adjacent table. These parameters will vary with an increase in temperature, electric field, impurity level, strain, and sundry other factors.

    The junction forward voltage is the voltage applied to the emitter-base junction of a BJT to make the base conduct a specified current. The current increases exponentially as the junction forward voltage is increased. The values given in the table are typical for a current of 1 mA (the same values apply to semiconductor diodes). The lower the junction forward voltage the better, as this means that less power is required to "drive" the transistor. The junction forward voltage for a given current decreases with an increase in temperature. For a typical silicon junction, the change is −2.1 mV/°C.[108] In some circuits special compensating elements (sensistors) must be used to compensate for such changes.

    The density of mobile carriers in the channel of a MOSFET is a function of the electric field forming the channel and of various other phenomena such as the impurity level in the channel. Some impurities, called dopants, are introduced deliberately in making a MOSFET, to control the MOSFET electrical behavior.

    The

    hole mobility columns show the average speed that electrons and holes diffuse through the semiconductor material with an electric field
    of 1 volt per meter applied across the material. In general, the higher the electron mobility the faster the transistor can operate. The table indicates that Ge is a better material than Si in this respect. However, Ge has four major shortcomings compared to silicon and gallium arsenide:

    1. Its maximum temperature is limited.
    2. It has relatively high leakage current.
    3. It cannot withstand high voltages.
    4. It is less suitable for fabricating integrated circuits.

    Because the electron mobility is higher than the hole mobility for all semiconductor materials, a given bipolar

    aluminum gallium nitride
    (AlGaN/GaN HEMTs) provide still higher electron mobility and are being developed for various applications.

    Maximum junction temperature values represent a cross-section taken from various manufacturers' datasheets. This temperature should not be exceeded or the transistor may be damaged.

    Al–Si junction refers to the high-speed (aluminum-silicon) metal–semiconductor barrier diode, commonly known as a Schottky diode. This is included in the table because some silicon power IGFETs have a parasitic reverse Schottky diode formed between the source and drain as part of the fabrication process. This diode can be a nuisance, but sometimes it is used in the circuit.

    Packaging

    Assorted discrete transistors
    Soviet-manufactured KT315b transistors

    Discrete transistors can be individually packaged transistors or unpackaged transistor chips.

    Transistors come in many different semiconductor packages (see image). The two main categories are through-hole (or leaded), and surface-mount, also known as surface-mount device (SMD). The ball grid array (BGA) is the latest surface-mount package. It has solder "balls" on the underside in place of leads. Because they are smaller and have shorter interconnections, SMDs have better high-frequency characteristics but lower power ratings.

    Transistor packages are made of glass, metal, ceramic, or plastic. The package often dictates the power rating and frequency characteristics. Power transistors have larger packages that can be clamped to heat sinks for enhanced cooling. Additionally, most power transistors have the collector or drain physically connected to the metal enclosure. At the other extreme, some surface-mount microwave transistors are as small as grains of sand.

    Often a given transistor type is available in several packages. Transistor packages are mainly standardized, but the assignment of a transistor's functions to the terminals is not: other transistor types can assign other functions to the package's terminals. Even for the same transistor type the terminal assignment can vary (normally indicated by a suffix letter to the part number, q.e. BC212L and BC212K).

    Nowadays most transistors come in a wide range of SMT packages. In comparison, the list of available through-hole packages is relatively small. Here is a short list of the most common through-hole transistors packages in alphabetical order: ATV, E-line, MRT, HRT, SC-43, SC-72, TO-3, TO-18, TO-39, TO-92, TO-126, TO220, TO247, TO251, TO262, ZTX851.

    Unpackaged transistor chips (die) may be assembled into hybrid devices.

    IBM SLT module of the 1960s is one example of such a hybrid circuit module using glass passivated transistor (and diode) die. Other packaging techniques for discrete transistors as chips include direct chip attach (DCA) and chip-on-board (COB).[109]

    Flexible transistors

    Researchers have made several kinds of flexible transistors, including organic field-effect transistors.[110][111][112] Flexible transistors are useful in some kinds of flexible displays and other flexible electronics.

    See also

    References

    1. ^ "Transistor". Britannica. Retrieved January 12, 2021.
    2. ^ a b "A History of the Invention of the Transistor and Where It Will Lead Us" (PDF). IEEE JOURNAL OF SOLID-STATE CIRCUITS Vol 32 No 12. December 1997.
    3. ^ "1926 – Field Effect Semiconductor Device Concepts Patented". Computer History Museum. Archived from the original on March 22, 2016. Retrieved March 25, 2016.
    4. ^ "The Nobel Prize in Physics 1956". Nobelprize.org. Nobel Media AB. Archived from the original on December 16, 2014. Retrieved December 7, 2014.
    5. ^ a b "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
    6. ^ .
    7. ^ a b c "Who Invented the Transistor?". Computer History Museum. December 4, 2013. Retrieved July 20, 2019.
    8. .
    9. ^ Lilienfeld, Julius Edgar (1927). Specification of electric current control mechanism patent application.
    10. ^ Vardalas, John (May 2003) Twists and Turns in the Development of the Transistor Archived January 8, 2015, at the Wayback Machine IEEE-USA Today's Engineer.
    11. ^ a b Lilienfeld, Julius Edgar, "Method and apparatus for controlling electric current" U.S. patent 1,745,175 January 28, 1930 (filed in Canada 1925-10-22, in US October 8, 1926).
    12. ^ "Method And Apparatus For Controlling Electric Currents". United States Patent and Trademark Office.
    13. ^ "Amplifier For Electric Currents". United States Patent and Trademark Office.
    14. ^ "Device For Controlling Electric Current". United States Patent and Trademark Office.
    15. ^ a b "Twists and Turns in the Development of the Transistor". Institute of Electrical and Electronics Engineers, Inc. Archived from the original on January 8, 2015.
    16. ^ Heil, Oskar, "Improvements in or relating to electrical amplifiers and other control arrangements and devices", Patent No. GB439457, European Patent Office, filed in Great Britain 1934-03-02, published December 6, 1935 (originally filed in Germany March 2, 1934).
    17. ^ "November 17 – December 23, 1947: Invention of the First Transistor". American Physical Society. Archived from the original on January 20, 2013.
    18. ^ Millman, S., ed. (1983). A History of Engineering and Science in the Bell System, Physical Science (1925–1980). AT&T Bell Laboratories. p. 102.
    19. .
    20. ^ "transistor". American Heritage Dictionary (3rd ed.). Boston: Houghton Mifflin. 1992.
    21. ^ "The Nobel Prize in Physics 1956". nobelprize.org. Archived from the original on March 12, 2007.
    22. ^
      S2CID 38161381
      .
    23. S2CID 108955928. Archived from the original on October 21, 2021. {{cite book}}: |journal= ignored (help
      )
    24. .
    25. ^ FR 1010427  H. F. Mataré / H. Welker / Westinghouse: "Nouveau sytème crystallin à plusieur électrodes réalisant des relais de effects électroniques" filed on August 13, 1948
    26. ^ US 2673948  H. F. Mataré / H. Welker / Westinghouse, "Crystal device for controlling electric currents by means of a solid semiconductor" French priority August 13, 1948
    27. ^ "1948, The European Transistor Invention". Computer History Museum. Archived from the original on September 29, 2012.
    28. ^ "1951: First Grown-Junction Transistors Fabricated | The Silicon Engine | Computer History Museum". www.computerhistory.org. Archived from the original on April 4, 2017.
    29. ^ "A Working Junction Transistor". PBS. Archived from the original on July 3, 2017. Retrieved September 17, 2017.
    30. S2CID 51652314
      .
    31. ^ The Wall Street Journal, December 4, 1953, page 4, Article "Philco Claims Its Transistor Outperforms Others Now In Use"
    32. ^ Electronics magazine, January 1954, Article "Electroplated Transistors Announced"
    33. ^ P. Mallery, Transistors and Their Circuits in the 4A Toll Crossbar Switching System, AIEE Transactions, September 1953, p.388
    34. ^ 1953 Foreign Commerce Weekly; Volume 49; pp.23
    35. ^ "Der deutsche Erfinder des Transistors – Nachrichten Welt Print – DIE WELT". Die Welt. Welt.de. November 23, 2011. Archived from the original on May 15, 2016. Retrieved May 1, 2016.
    36. ^ "Regency TR-1 Transistor Radio History". Archived from the original on October 21, 2004. Retrieved April 10, 2006.
    37. ^ "The Regency TR-1 Family". Archived from the original on April 27, 2017. Retrieved April 10, 2017.
    38. ^ "Regency manufacturer in USA, radio technology from United St". Archived from the original on April 10, 2017. Retrieved April 10, 2017.
    39. ^ Wall Street Journal, "Chrysler Promises Car Radio With Transistors Instead of Tubes in '56", April 28, 1955, page 1
    40. ^ "FCA North America - Historical Timeline 1950-1959". www.fcanorthamerica.com. Archived from the original on April 2, 2015. Retrieved December 5, 2017.
    41. .
    42. ^ Snook, Chris J. (November 29, 2017). "The 7 Step Formula Sony Used to Get Back On Top After a Lost Decade". Inc.
    43. ^ Kozinsky, Sieva (January 8, 2014). "Education and the Innovator's Dilemma". Wired. Retrieved October 14, 2019.
    44. ^ Riordan, Michael (May 2004). "The Lost History of the Transistor". IEEE Spectrum: 48–49. Archived from the original on May 31, 2015.
    45. .
    46. .
    47. ^ Lilienfeld, Julius Edgar, "Device for controlling electric current" U.S. patent 1,900,018 March 7, 1933 (filed in US March 28, 1928).
    48. .
    49. ^ Junction Field-Effect Devices, Semiconductor Devices for Power Conditioning, 1982.
    50. .
    51. ^ .
    52. ^ a b c "Martin Atalla in Inventors Hall of Fame, 2009". Retrieved June 21, 2013.
    53. ^ a b "Dawon Kahng". National Inventors Hall of Fame. Retrieved June 27, 2019.
    54. .
    55. .
    56. S2CID 29105721. Archived from the original
      (PDF) on July 19, 2019.
    57. EETimes
      . December 12, 2018. Retrieved July 18, 2019.
    58. .
    59. ^ "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum. Retrieved July 6, 2019.
    60. ^ D. Kahng and S. M. Sze, "A floating gate and its application to memory devices", The Bell System Technical Journal, vol. 46, no. 4, 1967, pp. 1288–1295
    61. .
    62. .
    63. ^ "IEEE Andrew S. Grove Award Recipients". IEEE Andrew S. Grove Award. Institute of Electrical and Electronics Engineers. Retrieved July 4, 2019.
    64. ^ "The Breakthrough Advantage for FPGAs with Tri-Gate Technology" (PDF). Intel. 2014. Retrieved July 4, 2019.
    65. ^ "Milestones:Invention of the First Transistor at Bell Telephone Laboratories, Inc., 1947". IEEE Global History Network. IEEE. Archived from the original on October 8, 2011. Retrieved August 3, 2011.
    66. ^ "List of IEEE Milestones". December 9, 2020.
    67. ^ a b "Remarks by Director Iancu at the 2019 International Intellectual Property Conference". United States Patent and Trademark Office. June 10, 2019. Retrieved July 20, 2019.
    68. .
    69. . In the field of electronics, the planar Si metal–oxide–semiconductor field-effect transistor (MOSFET) is perhaps the most important invention.
    70. .
    71. ^ a b "Triumph of the MOS Transistor". YouTube. Computer History Museum. August 6, 2010. Archived from the original on December 11, 2021. Retrieved July 21, 2019.
    72. ^ "The most manufactured human artifact in history". Computer History. April 2, 2018. Retrieved January 21, 2021.
    73. ^ FETs/MOSFETs: Smaller apps push up surface-mount supply. globalsources.com (April 18, 2007)
    74. ^ "Introducing M1 Pro and M1 Max: the most powerful chips Apple has ever built - Apple". www.apple.com. Retrieved October 20, 2022.
    75. .
    76. .
    77. ^ .
    78. .
    79. ^ "Transistor Base Resistor Calculator". January 27, 2012.
    80. ^ van der Veen, M. (2005). "Universal system and output transformer for valve amplifiers" (PDF). 118th AES Convention, Barcelona, Spain. Archived (PDF) from the original on December 29, 2009.
    81. ^ "Transistor Example". Archived from the original on February 8, 2008. 071003 bcae1.com
    82. PMID 30523104
      .
    83. .
    84. ^ Sansen, W. M. C. (2006). Analog design essentials. New York, Berlin: Springer. p. §0152, p. 28. .
    85. ^ a b "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Retrieved July 28, 2019.
    86. ^ .
    87. ^ "MOSFET DIFFERENTIAL AMPLIFIER" (PDF). Boston University. Retrieved August 10, 2019.
    88. ^ "IGBT Module 5SNA 2400E170100" (PDF). Archived from the original (PDF) on April 26, 2012. Retrieved June 30, 2012.
    89. .
    90. ^ STMicroelectronics. "ESBTs". www.st.com. Retrieved February 17, 2019. ST no longer offers these components, this web page is empty, and datasheets are obsoletes
    91. .
    92. ^ "Single Electron Transistors". Snow.stanford.edu. Archived from the original on April 26, 2012. Retrieved June 30, 2012.
    93. ^ Sanders, Robert (June 28, 2005). "Nanofluidic transistor, the basis of future chemical processors". Berkeley.edu. Archived from the original on July 2, 2012. Retrieved June 30, 2012.
    94. ^ "The return of the vacuum tube?". Gizmag.com. May 28, 2012. Archived from the original on April 14, 2016. Retrieved May 1, 2016.
    95. ^ "New Type of Transistor from a Germanium–Tin Alloy Developed". April 28, 2023.
    96. ^ "Timber! The World's First Wooden Transistor - IEEE Spectrum".
    97. ^ "Boffins claim to create the world's first wooden transistor".
    98. ^ "Paper Transistor - IEEE Spectrum". spectrum.ieee.org.
    99. ^ "This Diamond Transistor Is Still Raw, But Its Future Looks Bright - IEEE Spectrum". spectrum.ieee.org.
    100. ^ "The New, New Transistor - IEEE Spectrum". spectrum.ieee.org.
    101. ^ Staff, The SE (February 23, 2024). "Chip Industry Week In Review". Semiconductor Engineering.
    102. ^ "Transistor Data". Clivetec.0catch.com. Archived from the original on April 26, 2016. Retrieved May 1, 2016.
    103. ^ "Datasheet for BC549, with A, B and C gain groupings" (PDF). Fairchild Semiconductor. Archived (PDF) from the original on April 7, 2012. Retrieved June 30, 2012.
    104. ^ "Datasheet for BUK854-800A (800volt IGBT)" (PDF). Archived (PDF) from the original on April 15, 2012. Retrieved June 30, 2012.
    105. ^ "Richard Freeman's HP Part numbers Crossreference". Hpmuseum.org. Archived from the original on June 5, 2012. Retrieved June 30, 2012.
    106. ^ "Transistor–Diode Cross Reference – H.P. Part Numbers to JEDEC (pdf)" (PDF). Archived (PDF) from the original on May 8, 2016. Retrieved May 1, 2016.
    107. ^ "CV Device Cross-reference by Andy Lake". Qsl.net. Archived from the original on January 21, 2012. Retrieved June 30, 2012.
    108. .
    109. ^ . A hybrid circuit is defined as an assembly containing both active semiconductor devices (packaged and unpackaged)
    110. .
    111. .
    112. .

    Further reading

    Books
    Periodicals
    Databooks

    External links