Richard P. Brent

Source: Wikipedia, the free encyclopedia.

Richard Peirce Brent
NationalityAustralian
Alma materStanford University
AwardsHannan Medal (2005)
Scientific career
FieldsMathematics, computer science
InstitutionsAustralian National University
Doctoral advisorsGene H. Golub
George Forsythe

Richard Peirce Brent is an Australian

random number generators, computer architecture, and analysis of algorithms
.

In 1973, he published a

root-finding algorithm (an algorithm for solving equations numerically) which is now known as Brent's method.[2]

In 1975 he and

Salamin–Brent algorithm
, used in high-precision calculation of
. At the same time, he showed that all the elementary functions (such as log(x), sin(x) etc.) can be evaluated to high precision in the same time as (apart from a small constant factor) using the
arithmetic-geometric mean of Carl Friedrich Gauss.[3]

In 1979 he showed that the first 75 million complex zeros of the Riemann zeta function lie on the critical line, providing some experimental evidence for the Riemann hypothesis.[4]

In 1980 he and Nobel laureate

Euler–Mascheroni constant
using Bessel functions, and showed that can not have a simple rational form p/q (where p and q are integers) unless q is extremely large (greater than 1015000).[5]

In 1980 he and

elliptic curve factorisation
algorithm.

In 2002, Brent, Samuli Larvala and

GF
(2):

The degree 6972593 is the exponent of a Mersenne prime.[8]

In 2009 and 2016, Brent and Paul Zimmermann discovered some even larger primitive trinomials, for example:

The degree

43112609 is again the exponent of a Mersenne prime.[9] The highest degree trinomials found were three trinomials of degree 74,207,281, also a Mersenne prime exponent.[10]

In 2011, Brent and Paul Zimmermann published Modern Computer Arithmetic (Cambridge University Press), a book about algorithms for performing arithmetic, and their implementation on modern computers.

Brent is a Fellow of the

IEEE, SIAM and the Australian Academy of Science. In 2005, he was awarded the Hannan Medal by the Australian Academy of Science. In 2014, he was awarded the Moyal Medal by Macquarie University
.

See also

References

  1. ^ Federation Fellowships Funding Outcomes 2004 Archived 2012-07-07 at the Wayback Machine. Australian Research Council
  2. ANU
    .
  3. CiteSeerX 10.1.1.119.3317
    .
  4. .
  5. ^ Brent, Richard Peirce and McMillan, E. M. (1980). "Some New Algorithms for High-Precision Computation of Euler's Constant". Mathematics of Computation 34 (149) 305-312.
  6. JSTOR 2007666
    .
  7. .
  8. ^ Brent, Richard Peirce and Larvala, S. and Zimmermann, Paul (2005). "A primitive trinomial of degree 6972593". Mathematics of Computation 74 (250) 1001-1002.
  9. ^ Brent, Richard Peirce and Zimmermann, Paul (2011). "The great trinomial hunt". Notices of the American Mathematical Society 58 233-239.
  10. ^ Richard P. Brent, Paul Zimmermann, "Twelve new primitive binary trinomials", arXiv:1605.09213, 24 May 2016.

External links