SDD-AGE

Source: Wikipedia, the free encyclopedia.
Example of a resulting western blott after SDD-AGE electrophoretic separation, staining by specific antibodies

In

polyacrylamide gel
, which has small pores. Agarose on the other hand has large pores, which allows for the separation of polymers.

Use of this method allowed researchers to understand that at least some types of prion aggregates existed in a two-level structure -

protein molecules
grouped into polymers, which are very stable and withstand treatment with 2% SDS at room temperature, and aggregates, which are bundles of polymers, that dissociate under these conditions.

Differences in the size of polymers can indicate the efficiency of polymer fragmentation in vivo.

History

The method was created in the Molecular Genetics laboratory of the Russian Cardiology Research Institute and was published in 2003 by Kryndushkin et al.[1] The original method used a TAE buffering system and incorporated a modified vacuum blotting system for the transfer of proteins onto a membrane (originally PVDF). The modified vacuum blotting system is actually a vacuum-assisted capillary transfer, since the vacuum only helps fluid that has already gone through the gel and membrane to leave the system.

Variations

Other modifications have also been used, such as the one described in Bagriantsev et al.,[7] using traditional wet transfer and a TGB buffering system, and others using semi-dry transfer or capillary transfer.[8]

DD-AGE, a further variation of the method that uses fully

polyglutamine proteins.[9]

References