STRAT-X

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

STRAT-X
U.S. Armed Forces

Military contractors
OutcomeImplementation of several military concepts

STRAT-X, or Strategic-Experimental, was a

, among others. Journalists have regarded STRAT-X as a major influence on the course of U.S. nuclear policy.

Background

In the mid-1960s, reports received by U.S. intelligence agencies indicated that the Soviets were planning to deploy large numbers of highly accurate and powerful

Minuteman hardened silos (see Counterforce). This was considered a significant risk to American ICBMs and, as a result, to the United States' nuclear defense strategy by reducing the United States' ability to retaliate with nuclear weapons if attacked.[N 1]

At the same time, the Soviets were designing and constructing increasingly sophisticated

According to Graham Spinardi in his book From Polaris to Trident (1994), STRAT-X was a response by the

U.S. Air Force; the service was demanding a large ICBM called the WS-120A. Spinardi suggests that STRAT-X was allowed to proceed so it could terminate the study for such a missile.[6] Funding for the WS-120A would not be released by Secretary McNamara, and plans for such a missile were canceled in 1967.[7]

Study

The study was named "STRAT-X" in order not to reveal its intentions, and also to eliminate partiality towards

Rear Admirals George H. Miller and Levering Smith.[8]

On 1 November 1966, McNamara signed an order authorizing STRAT-X, officially initiating the study. During STRAT-X, the working panel was "encouraged to examine system concepts unrestrained by considerations of potential management problems or political influences."

Soviet responses. To meet this requirement, a series of documents were written from the perspective of the Soviet Minister of Defense General Andrei Grechko, complete with anti-capitalistic statements and a prediction of the eventual triumph of socialism.[1][9] In the end, a twenty-volume report covered no fewer than 125 different ideas for missile systems, nine of which were reviewed in great detail.[8][9][10]

Findings and consequences

Long vehicle in green black and dirt brown camouflage executing a turn on light-colored paved road for camera.
A Hard Mobile Launcher that was designed to carry the MGM-134 Midgetman missile[10]

Of the nine prospective weapons systems, five were land-based. These were: "Rock Silo"—a system where missiles would be stored in hardened silos of granite bedrock in the Western and Northern United States; "Soft Silo"—a similar system but with easily and cheaply constructed silos; "Rock Tunnel"—a system where missiles would be transported around in deep underground networks before emerging at launch points; "Soft Tunnel"—a similar tunnel but built more cheaply and easily; and "Land Mobile"—a truck-based system where road-transporters traveled at speeds up to 35 miles per hour (56 km/h) constantly around a dedicated and winding road system in 65,000 square miles (170,000 km2) of public land.[11]

Of the remaining four, three were sea-based. These were: "Canal-Based"—a systems where missiles would be sailed in canals to confuse Soviet

standoff ballistic missiles to launch their payloads at the Soviet Union.[10]

Despite the numerous options investigated during the study, none were fully implemented. Although the STRAT-X "Land Mobile" option resulted in the MGM-134 Midgetman and LGM-118 Peacekeeper missiles, the fall of communism throughout the late 1980s and early 1990s resulted in the Midgetman being canceled while still a prototype,[N 3] while only 50 out of the original 100 Peacekeeper missiles were ever fielded.[11] Nevertheless, the study did inspire a number of developments in nuclear weapons delivery systems.[1] In October 1974, the U.S. Air Force successfully conducted an air launch of a Minuteman missile from a C-5 Galaxy, demonstrating the credibility of the "Air Launched ICBM" option of STRAT-X.[12]

Although the U.S. Navy then had several classes of

Hyman Rickover, director of the Naval Reactors office, wanted a boat capable of a burst of high speed in order to affect a safe "getaway" after launching the boat's payload. As a result, the Ohio class was designed to accommodate enormous nuclear reactors to produce the required speed. Ohio-class submarines carry their missiles inside of their hulls, despite STRAT-X's recommendation.[11] Ohio-class submarines and Trident missiles are still in service as of 2016
.

Legacy

STRAT-X had far-reaching effects on the development and deployment of U.S. nuclear forces. It was the first time that the strategic requirements of the

B-52 Stratofortress, to STRAT-X despite their lack of references in the study.[11]

Footnotes

Notes

  1. ^ "First, increasingly numerous ICBMs posed a threat to America's own weapons."[3]
  2. ^ "The survivability of U.S. missiles from a Soviet first-strike attack was given particular consideration by the Strat-X participants ..."[5]
  3. ^ "The [MGM-134 Midgetman] missile was canceled in 1992, following the collapse of the Berlin Wall and the end of the Cold War."[10]

References

  1. ^ a b c d e f g h i Grier 2010, p. 53.
  2. ^ "About SSP: September 1966 ~ 1975". U.S. Navy. Navy.mi. Archived from the original on 12 November 2012. Retrieved 28 September 2013.
  3. ^ a b c d e Grier 2010, p. 52.
  4. ^ "R-36M / SS-18 SATAN". Federation of American Scientists. FAS.org. 29 July 2000. Retrieved 24 February 2012.
  5. ^ a b Polmar and Moore 2004, p. 184.
  6. ^ Spinardi 1994, p. 113.
  7. ^ Parsch, Andreas (2003). "BGM-75 AICBM". Directory of U.S. Military Rockets and Missiles. Designation-systems.net. Retrieved 1 June 2012.
  8. ^ a b c "ULMS". Federation of American Scientists. FAS.org. 30 May 1997. Retrieved 24 February 2012.
  9. ^ a b c Burr, William (6 January 2010). "The STRAT-X Report and Its Impact". National Security Archive. Retrieved 24 February 2012.
  10. ^ a b c d e Grier 2010, p. 54.
  11. ^ a b c d Grier 2010, p. 55.
  12. ^ "History Milestones". U.S. Air Force. AF.mil. Archived from the original on 18 October 2012. Retrieved 24 February 2012.
  13. ^ Clearwater 1996, p. 31.
  14. ^ "Fleet Ballistic Missile Submarines – SSBN". U.S. Navy. Navy.mil. 10 November 2011. Retrieved 24 February 2012.
  15. ^ "Guided Missile Submarines – SSGN". U.S. Navy. Navy.mil. 10 November 2011. Retrieved 25 February 2012.

Bibliography