Synthesis of bioglass

Source: Wikipedia, the free encyclopedia.

Until now, various methods have been developed for the synthesis of bioglass, its composites, and other

sol-gel synthesis of bioglass composites, which is a highly efficient technique for bioglass composites for tissue engineering
applications.

Melt quench synthesis

The first

TiO2 on the in vitro or in vivo properties of certain compositions of bioactive glasses has been reported.[6][7][8][9][10][excessive citations] However, the influence of the composition on the properties and compatibility of bioactive and biodegradable
glasses is not fully understood.

The scaffolds fabricated by melt quench technique have much less porosity which causes healing and defects in tissue integration during in-vivo testing.

Sol–gel process

The

calcined at 600–700°C to form the glass. Based on the preparation method, sol–gel derived products, e.g. thin films or particles are highly porous exhibiting a high specific surface area. Recent work on fabricating bioactive silicate glass nanoparticles by sol–gel process has been carried out by Hong et al.[12] In their research, nanoscale bioactive glass particles were obtained by the combination of two steps; sol–gel route and co-precipitation method, wherein the mixture of precursors was hydrolyzed in acidic environment and condensed in alkaline condition separately, and then followed by a freeze-drying process. The morphology and size of bioactive glass nanoparticles could be tailored by varying the production conditions and the feeding ratio of reagents
.

Different ions can be added to bioactive glasses, such as

bond number increased with increasing silver concentration and this resulted in structural densification.[13] It was also observed that quartz and metallic silver crystallization increased with the increase in silver content in bioactive glass while hydroxyapatite
crystallization decreased.

There is wide agreement about the versatility of the sol–gel technique to synthesize inorganic materials and it has been shown to be suitable for production of a variety of bioactive glasses. However, the method is also limited in terms of compositions that can be produced. Moreover, remaining water or residual solvent content may result in complications of the method for the intended biomedical applications of the nanoparticles or nanofibers produced. Usually a high temperature calcination step is required to eliminate organics remnants. In addition, sol–gel processing is relatively time consuming and since it is not a continuous process, batch-to-batch variations may occur.[citation needed]

Newer methods

Newer methods include flame and microwave synthesis of Bioglass, which has been gaining attention in recent years. Flame synthesis works by baking the powders directly in a flame reactor.

ultrasonic bath, and irradiated.[15]

References

  1. ^ Hench, L.L. & Paschall, H.A. (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle, J Biomed Mater Res, Vol. 7, No. 3, pp. 25-42.
  2. ^ Andersson, O.H., Karlsson, K.H., Kangasniemi, K. & Xli-Urpo, A. (1988). Models for physical properties and bioactivity of phosphate opal glasses. Glastechnische Berichte, 61(10):300-305.
  3. ^ Watts SJ, Hill RG, O’Donnell MD, Law RV. Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 2010;356:517-24.
  4. ^ Gentleman, E., Fredholm, Y.C., Jell, G., Lotfibakhshaiesh, N., O'Donnell, M.D., Hill, R.G. & Stevens, M.M. (2010) 'The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro', Biomaterials, 31(14): 3949-3956.
  5. ^ V. Aina, G. Lusvardi, G. Malavasi, L. Menabue, C. Morterra, Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids, Acta Biomaterialia 5 (2009) 3548–3562.
  6. ^ Andersson, Ö.H., Liu, G., Karlsson, K.H., Niemi, L., Miettinen, J. & Juhanoja, J. (1990) 'In vivo behaviour of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system', Journal of Materials Science: Materials in Medicine, 1(4): 219-227.
  7. ^ W.C.A. Vrouwenvelder, C.G. Groot, K. Degroot, Better histology and biochemistry for osteoblasts cultured on titanium doped bioactive glass — Bioglass 45S5 compared with iron-containing, titanium-containing, fluorine containing and boron-containing bioactive glasses, Biomaterials 15 (1994) 97–106.
  8. ^ Brink M, Turunen T, Happonen R-P, Yli-Urpo A. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Biomed Mater Res 1997;37:114-121.
  9. ^ Haimi, S., Gorianc, G., Moimas, L., Lindroos, B., Huhtala, H., Räty, S., Kuokkanen, H., Sándor, G.K., Schmid, C., Miettinen, S. & Suuronen, R. (2009) 'Characterization of zinc-releasing three Dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation', Acta Biomaterialia, Vol. 5, No. 8, pp. 3122-3131.
  10. ^ Zhang, J., Wang, M., Cha, JM. & Mantalaris, A. (2009). The incorporation of 70s bioactive glass to the osteogenic differentiation of murine embryonic stems cells in 3D bioreactors. J. Tissue Eng. Regen. Med. 3(1): 63-71.
  11. ^ Li R, Clark AE, Hench LL. An Investigation of Bioactive Glass Powders by Sol- Gel Processing. J App Biomater 1991;2(4):231-239.
  12. ^ Hong Z, Liu A, Chen L, Chen X, Jing X. Preparation of bioactive glass ceramic nanoparticles by combination of sol-gel and coprecipitation method. J Non- Cryst Solids 2009;355(6):368-372
  13. ^ Delben JRJ, Pimentel OM, Coelho MB, Candelorio PD, Furini LN, Santos FA, Vicente FS, Delben AAST. Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver. J Therm Anal Calorim 2009;97:433–436.
  14. PMID 16550274
    .
  15. .