Synthesis of nanoparticles by fungi

Source: Wikipedia, the free encyclopedia.

Throughout human history, fungi have been utilized as a source of food and harnessed to ferment and preserve foods and beverages. In the 20th century, humans have learned to harness fungi to protect human health (

biosurfactants.[1] With the advent of modern nanotechnology in the 1980s, fungi have remained important by providing a greener alternative to chemically synthesized nanoparticle.[2]

Background

SEM image of fungal hyphae and fungal derived silver nanoparticles showing a large conglomeration made up of individual nanoparticles with fungal hyphae (dark areas) in background.

A

quantum dots
.

Silver nanoparticle production

Synthesis of silver nanoparticles has been investigated utilizing many ubiquitous fungal species including Trichoderma,[6][7] Fusarium,[8] Penicillium,[9] Rhizoctonia,[citation needed] Pleurotus and Aspergillus.[10] Extracellular synthesis has been demonstrated by Trichoderma virde, T. reesei, Fusarium oxysporm, F. semitectum, F. solani, Aspergillus niger, A. flavus,[11] A. fumigatus, A. clavatus, Pleurotus ostreatus, Cladosporium cladosporioides,[6] Penicillium brevicompactum, P. fellutanum, an endophytic Rhizoctonia sp., Epicoccum nigrum, Chrysosporium tropicum, and Phoma glomerata, while intracellular synthesis was shown to occur in a Verticillium [12] species, and in Neurospora crassa.

Gold nanoparticle production

Synthesis of gold nanoparticles has been investigated utilizing Fusarium,[13] Neurospora,[14] Verticillium, yeasts,[15][16] and Aspergillus. Extracellular gold nanoparticle synthesis was demonstrated by Fusarium oxysporum, Aspergillus niger, and cytosolic extracts from Candida albican. Intracellular gold nanoparticle synthesis has been demonstrated by a Verticillum species, V. luteoalbum,[17]

Miscellaneous nanoparticle production

In addition to gold and silver, Fusarium oxysporum has been used to synthesize zirconia, titanium, cadmium sulfide and cadmium selenide nanosize particles. Cadmium sulfide nanoparticles have also been synthesized by Trametes versicolor, Schizosaccharomyces pombe, and Candida glabrata.[18] The white-rot fungus Phanerochaete chrysosporium has also been demonstrated to be able to synthesize elemental selenium nanoparticles.[19]

Culture techniques and conditions

Culture techniques and media vary depending upon the requirements of the fungal isolate involved, however the general procedure consist of the following: fungal

supernatant, and an aliquot of the supernatant is added to 1.0 mM ion solution. The ion solution is then monitored for 2 to 3 days for the formation of nanoparticles. Another common culture technique is to add washed fungal hyphae directly into 1.0 mM ion solution instead of utilizing the fungal filtrate. Silver nitrate is the most widely used source of silver ions, but silver sulfate has also been utilized.[citation needed] Choloroauric acid is generally used as the source of gold ions at various concentrations (1.0 mM[13] and 250 mg to 500 mg[17] of Au per liter). Cadmium sulfide nanoparticle synthesis for F. oxysporum was conducted using a 1:1 ratio of Cd2+ and SO42− at a 1 mM concentration.[20] Gold nanoparticles can vary in shape and size depending on the pH of the ion solution.[17] Gericke and Pinches (2006) reported that for V. luteoalbum small (cc.10 nm) spherical gold nanoparticles are formed at pH 3, larger (spherical, triangular, hexagon and rods) gold nanoparticles are formed at pH 5, and at pH 7 to pH 9 the large nanoparticles tend to lack a defined shape. Temperature interactions for both silver and gold nanoparticles were similar; a lower temperature resulted in larger nanoparticles while higher temperatures produced smaller nanoparticles.[17]

Analytical techniques

Visual observations

For externally synthesized silver nanoparticles the silver ion solution generally becomes brownish in color,

plasmon resonance of the metallic nanoparticles.[6][21] For external gold nanoparticle production, the solution color can vary depending on the size of the gold nanoparticles; smaller particles appear pink while large particles appear purple. Intracellular gold nanoparticle synthesis typically turns the hyphae purple while the solution remains clear. Externally synthesized cadmium sulfide nanoparticles were reported to make the solution color appear bright yellow.[20]

Analytical tools

Scanning electron microscopy (

X-ray diffraction are used to characterize different aspects of nanoparticles. Both SEM and TEM can be used to visualize the location, size, and morphology of the nanoparticles, while UV-vis spectroscopy can be used to confirm the metallic nature, size and aggregation level. Energy dispersive analysis of X-ray is used to determine elemental composition, and X-ray diffraction is used to determine chemical composition and crystallographic structure. UV-Vis absorption peaks for silver, gold, and cadmium sulfide nanoparticles can vary depending on particle size: 25-50 nm silver particles peak ca. 415 nm, gold nanoparticles 30-40 nm peak ca. 450 nm, while a cadmium sulfide absorption edge ca. 450 is indicative of quantum size particles.[20]
Larger nanoparticle of each type will have UV-Vis absorption peaks or edges that shift to longer wavelengths while smaller nanoparticles will have UV-Vis absorption peaks or edges that shift to shorter wavelengths.

Formation mechanisms

Gold and silver

SEM image of fungal derived silver nanoparticles stabilized by a capping agent.

Nitrate reductase was suggested to initiate nanoparticle formation by many fungi including Penicillium species, while several enzymes, α-NADPH-dependent reductases, nitrate-dependent reductases and an extracellular shuttle quinone, were implicated in silver nanoparticle synthesis for Fusarium oxysporum. Jain et al. (2011) indicated that silver nanoparticle synthesis for A. flavus occurs initially by a "33kDa" protein followed by a protein (cystein and free amine groups)

ligninase.[20]

Cadmium sulfide

Cadmium sulfide nanoparticle synthesis by yeast involves sequestration of Cd2+ by glutathione-related peptides followed by reduction within the cell. Ahmad et al. (2002) reported that cadmium sulfide nanoparticle synthesis by Fusarium oxysporum was based on a sulfate reductase (enzyme) process.

References

  1. .
  2. ^ a b c Ghorbani, HR; Safekordi AA; Attar H; Rezayat Sorkhabadi SM (2011). "Biological and non-biological methods for silver nanoparticles synthesis". Chemical and Biochemical Engineering Quarterly. 25: 317–326.
  3. ^ .
  4. ^ Popescu, M; Velea A; Lőrinczi A (2010). "Biogenic production of nanoparticles". Digest J of Nanomaterials and Biostructures. 5: 1035–1040.
  5. ^ Sastry, M; Ahmad A; Khan MI; Kumar R (2003). "Biosynthesis of metal nanoparticles using fungi and actinomycete". Current Science. 85: 162–170.
  6. ^ .
  7. ^ .
  8. ^ .
  9. ^ a b Naveen, H; Kumar G; Karthik L; Roa B (2010). "Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp". Archives of Applied Science Research. 2: 161–167.
  10. PMID 16420977
    .
  11. ^
    PMID 21088776.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  12. doi:10.1021/nl0155274.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  13. ^ .
  14. .
  15. .
  16. .
  17. ^ .
  18. .
  19. .
  20. ^ .
  21. .