Penicillium

Page protected with pending changes
Source: Wikipedia, the free encyclopedia.

Penicillium
Penicillium sp.
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Penicillium
Link (1809)
Type species
Penicillium expansum
Link (1809)
Species

over 300

Synonyms[1]
List
  • Aspergillopsis Sopp (1912)
  • Carpenteles Langeron (1922)
  • Chromocleista Yaguchi & Udagawa (1993)
  • Citromyces Wehmer (1893)
  • Coremium Link (1809)
  • Eladia G. Sm. (1961)
  • Eupenicillium F. Ludw. (1892)
  • Floccaria
    Grev.
    (1827)

  • Hemicarpenteles A. K. Sarbhoy & Elphick (1968)
  • Moniliger Letell. (1839)
  • Pritzeliella
    Henn.
    (1903)
  • Thysanophora W.B. Kendr. (1961)
  • Toluromyces Delitsch (1943)
  • Walzia Sorokin (1871)

Penicillium (/ˌpɛnɪˈsɪliəm/) is a genus of ascomycetous fungi that is part of the mycobiome of many species and is of major importance in the natural environment, in food spoilage, and in food and drug production.

Some members of the genus produce penicillin, a molecule that is used as an antibiotic, which kills or stops the growth of certain kinds of bacteria. Other species are used in cheesemaking. According to the Dictionary of the Fungi (10th edition, 2008), the widespread genus contains over 300 species.[2]

Taxonomy

The genus was first described in the scientific literature by

conidiophore (asexual spore-producing structure). The common apple rot fungus P. expansum was later selected as the type species.[5]

In his 1979

subgenera based on conidiophore morphology and branching pattern: Aspergilloides, Biverticillium, Furcatum, and Penicillium.[6] Species included in subgenus Biverticillium were later merged into Talaromyces
.

Species

axenic culture
Some penicillium mold on mandarin oranges, probably Penicillium digitatum.

Selected species include;

Etymology

The genus name is derived from the Latin root penicillum, meaning "painter's brush", and refers to the chains of conidia that resemble a broom.[7]

Characteristics

Penicillium sp. under bright field microscopy (10 × 100 magnification) with lactophenol cotton blue stain

The

conidia. These propagules play a significant role in reproduction; conidia are the main dispersal strategy of these fungi.[8]

Sexual reproduction involves the production of

ascospores, commencing with the fusion of an archegonium and an antheridium, with sharing of nuclei. The irregularly distributed asci
contain eight unicellular ascospores each.

Ecology

Species of Penicillium are ubiquitous soil fungi preferring cool and moderate climates, commonly present wherever organic material is available.

molds, they are among the main causes of food spoilage, especially species of subgenus Penicillium.[9] Many species produce highly toxic mycotoxins. The ability of these Penicillium species to grow on seeds and other stored foods depends on their propensity to thrive in low humidity and to colonize rapidly by aerial dispersion while the seeds are sufficiently moist.[10]
Some species have a blue color, commonly growing on old bread and giving it a blue fuzzy texture.

Some Penicillium species affect the fruits and bulbs of plants, including

Penicillium species are present in the air and dust of indoor environments, such as homes and public buildings. The fungus can be readily transported from the outdoors, and grow indoors using building material or accumulated soil to obtain nutrients for growth. Penicillium growth can still occur indoors even if the relative humidity is low, as long as there is sufficient moisture available on a given surface. A British study determined that Aspergillus- and Penicillium-type spores were the most prevalent in the indoor air of residential properties, and exceeded outdoor levels.

relative humidity is 85% and the moisture content of the tiles is greater than 2.2%.[15]

Some Penicillium species cause damage to machinery and the combustible materials and lubricants used to run and maintain them. For example,

P. nalgiovensis affect fuels; P. chrysogenum, P. rubrum, and P. verrucosum cause damage to oils and lubricants; P. regulosum damages optical and protective glass.[16]

Economic value

Core structure of penicillin
Griseofulvin

Several species of the genus Penicillium play a central role in the production of cheese and of various meat products. To be specific, Penicillium molds are found in blue cheese. Penicillium camemberti and Penicillium roqueforti are the molds on Camembert, Brie, Roquefort, and many other cheeses. Penicillium nalgiovense is used in soft mold-ripened cheeses, such as Nalžovy (ellischau) cheese, and to improve the taste of sausages and hams, and to prevent colonization by other molds and bacteria.[17][18]

In addition to their importance in the food industry, species of Penicillium and Aspergillus serve in the production of a number of biotechnologically produced enzymes and other macromolecules, such as gluconic, citric, and tartaric acids, as well as several pectinases, lipase, amylases, cellulases, and proteases. Some Penicillium species have shown potential for use in bioremediation, more specifically mycoremediation, because of their ability to break down a variety of xenobiotic compounds.[19]

The genus includes a wide variety of species molds that are the source molds of major

Nobel Prize in Medicine in 1945.[20]

chemotherapeutic agent[21] that was discovered in P. griseofulvum.[22] Additional species that produce compounds capable of inhibiting the growth of tumor cells in vitro include: P. pinophilum,[23] P. canescens,[24] and P. glabrum.[24]

Reproduction

Although many eukaryotes are able to reproduce sexually, as much as 20% of fungal species had been thought to reproduce exclusively by asexual means. However recent studies have revealed that sex occurs even in some of the supposedly asexual species. For example, sexual capability was recently shown for the fungus Penicillium roqueforti, used as a starter for blue cheese production.[25] This finding was based, in part, on evidence for functional mating type (MAT) genes that are involved in fungal sexual compatibility, and the presence in the sequenced genome of most of the important genes known to be involved in meiosis. Penicillium chrysogenum is of major medical and historical importance as the original and present-day industrial source of the antibiotic penicillin. The species was considered asexual for more than 100 years despite concerted efforts to induce sexual reproduction. However, in 2013, Bohm et al.[26] finally demonstrated sexual reproduction in P. chrysogenum.

These findings with Penicillium species are consistent with accumulating evidence from studies of other eukaryotic species that sex was likely present in the common ancestor of all eukaryotes.[27] Furthermore, these recent results suggest that sex can be maintained even when very little genetic variability is produced.

Prior to 2013, when the "one fungus, one name" nomenclature change came into effect, Penicillium was used as the genus for anamorph (clonal forms) of fungi and Talaromyces was used for the teleomorph (sexual forms) of fungi. After 2013 however, fungi were reclassified based on their genetic relatedness to each other and now the genera Penicillium and Talaromyces both contain some species capable of only clonal reproduction and others that can reproduce sexually.

References

  1. Westerdijk Fungal Biodiversity Institute
    . Retrieved 2023-09-20.
  2. .
  3. ^ Identification and nomenclature of the genus Penicillium, C.M. Visagie1, J. Houbraken1, , , J.C. Frisvad2, , , S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, R.A. Samson, 22 September 2014, https://dx.doi.org/10.1016/j.simyco.2014.09.001
  4. ^ Link, JHF (1809). "Observationes in ordines plantarum naturales. Dissertatio I". Magazin der Gesellschaft Naturforschenden Freunde Berlin (in Latin). 3: 3–42.
  5. .
  6. .
  7. . Retrieved 2013-02-03.
  8. S2CID 84610634. {{cite journal}}: Cite journal requires |journal= (help
    )
  9. ^ Samson RA, Seifert KA, Kuijpers AF, Houbraken JA, Frisvad JC (2004). "Phylogenetic analysis of Penicillium subgenus Pencillium using partial beta-tubulin sequences" (PDF). Studies in Mycology. 49: 175–200. Archived from the original (PDF) on 2012-03-22. Retrieved 2011-07-14.
  10. PMID 11204163
    .
  11. . Retrieved 2013-02-03.
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. . Retrieved 2013-02-03.
  19. .
  20. . Retrieved 2013-02-03.
  21. .
  22. .
  23. .
  24. ^ .
  25. .
  26. .
  27. .

External links